Aggregate Planning using Overtime and Adding Number of Employees to Meet the Convection Industry’s Demand
PDF

Keywords

aggregate planning
overtime
additiion of employees

Abstract

The research aimed to propose the implementation of prediction (forecast) using the approaches of overtime and adding the number of employees in convection industry. This study uses a descriptive type of research with time series method. The research data is quantitative data, which is processed by forecasting methods through Zaitun Time Series, as well as aggregate planning. The data collection techniques are such as interviews, documentation and observations. The results show that the best methods to calculate the prediction in Convection Industry are the Decomposition Multiplicative and Decomposition Additive methods. Conducting aggregate planning in Convection Industry with overtime approach for the Wool Peach product(s) costs about Rp 38,689,840,000; for the Max Mara product(s) it costs about Rp 8,344,647,000; while for the Rayon product(s) it costs about Rp 10,769,950,000. Meanwhile, conducting aggregate planning in Convection Industry with the approach of adding the number of employees for the Wool Peach product(s) costs about Rp 38,630,470,000; for the Max Mara product(s) it costs about Rp 8,343,099,000; while for the Rayon products(s) it costs about Rp 10,768,180,000. Convection Industry is recommended to apply the approach of adding the number of employees so as to increase production rather than using the overtime approach (ARRR, AR).

PDF
Dimensions

References

Adenomon, M. O., & Oyejola, B. A. (2014). Forecasting meteorological time series data with a reduced form Vector Autoregressive (Var) model and three univariate time series techniques: A comparative study. Social and Basic Sciences Research Review, 2(3), 139-152.

Alamsyah, Zakaria, J., & Mapparenta. (2020). Pengaruh tenaga kerja, investasi swasta dan investasi pemerintah terhadap produksi pada sector industri di Kabupaten Sidengreng Rappang. YUME Journal of Management, 3(1), 41-61. https://doi.org/10.2568/yum.v3i1.620

Assauri, S. (2016). Manajemen operasi produksi. Jakarta: PT. Raja Grafido Persada.

Auliasari, K., Kertaningtyas, M., & Kriswantono, M. (2019). Penerapan metode peramalan untuk identifikasi potensi permintaan konsumen. Informatics Journal, 4(3), 121-129. https://doi.org/10.19184/isj.v4i3.14615

Cheraghalikhani, A., Khoshalhan, F., & Mokhtari, H. (2019). Aggregate production planning: A literature review and future research directions. International Journal of Industrial Engineering Computations, 10(2), 309-330. http://dx.doi.org/10.5267/j.ijiec.2018.6.002

Domingues, I., & Machado, J. C. (2017). Lean thinking in non-profit organization. In Machado, C., & Davim, J. P. (Eds.), Green and lean management (pp. 71-107). Switzerland: Springer.

Fajar, M. & Lestari, Y. D. (2017). Aggregate planning analysis in PT. Akebono Brake Astra Indonesia. Journal of Business and Management, 6(2), 182-191.

Fiorentino, R. (2018). Operations strategy: A firm boundary-based perspective. Business Process Management Journal, 22(6), 1022-1043. https://doi.org/10.1108/BPMJ-06-2015-0087

Heizer, J., Render, B., & Munson, C. (2017). Principles of Operations Management. New York: Pearson.

Hudaningsih, N., Utami, S. F., & Jabbar, W. A. A. (2020). Perbandingan peramalan penjualan produk aknil PT. Sunthi Sepuri menggunakan metode single moving average dan single exponential smooting. Jurnal Informatika Teknologi dan Sains, 2(1), 15-22. https://doi.org/10.51401/jinteks.v2i1.554

Lestari, R. (2021, September 2). Utilisasi industri tekstil 65 persen, safeguard garmen jadi harapan. Bisnis.com. https://ekonomi.bisnis.com/read/20210902/257/1437174/utilisasi-industri-tekstil-65-persen-safeguard-garmen-jadi-harapan

Nam, S. & Logendran, R. (1992). Aggregate production planning -- A survey of models and methodologies. European Journal of Operational Research, 61(3), 255-272.

Nugraha, I., Hisjam, M., & Sutopo, W. (2020). Aggregate planning method as production quantity planning and control to minimizing cost. IOP Conference Series Materials Science and Engineering, 943(1).

Nugroho, I. A. & Emaputra, A. (2021). Perencanaan proses produksi penyablonan t-shirt dengan metode aggregate planning heuristik di Doublefive Store and Clothing Yogyakarta. Jurnal Teknologi Technoscientia, 14(1), 31-35. https://doi.org/10.34151/technoscientia.v14i1.3463

Oey, E., Wijaya, W. A., & Hansopaheluwakan, S. (2020). Forecasting and aggregate planning application – a case study of a small enterprise in Indonesia. International Journal of Process Management and Benchmarking, 10(1), 1-21.

Peinado, J., Graeml, A. R., & Vianna F. (2018). Operations management body of knowledge and its relevance to manufacturing and service organizations. Revista de Gestão, 25(4), 373-389. https://doi.org/10.1108/REGE-03-2018-0049

Robbins, S. P., & Coulter, M. (2016). Management. London: Pearson Education.

Shi, Y., & Haase, C. (1996). Optimal trade-offs of aggregate production planning with multi-objective and multi-capacity-demand levels. International Journal of Operations and Quantitative Management, 2(2), 127-143.

Sumolang, Z. V., Rotinsulu, T. O., & Engka, D. S. M. (2017). Analisis faktor-faktor yang mempengaruhi produksi industry kecil olahan ikan di Kota Manado. Jurnal Pembangunan Ekonomi dan Keuangan Daerah, 18(6), 1-17. https://doi.org/10.35794/jpekd.16459.19.3.2017

Wilson, J. M. (2018). Deconstructing the reinvention of operations management. Journal of Management History, 24(2), 128-155. http://dx.doi.org/10.1108/JMH-06-2017-0028

Wolniak, R. (2020). Main functions of operation management. Production Engineering Archives, 26(1), 11-14. https://doi.org/10.30657/pea.2020.26.03

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 Array