Board Game Cafe Analysed Analysis on Sales and Games at Dhadhu Cafe
Main Article Content
Abstract
This study aims to enhance understanding of the factors influencing sales and game favoured by players at Dhadhu Cafe, a themed board game cafe. Key factors such as operational hours, promotional activities, game preferences, and menus are analysed using data visualization and multiple linear regression to inform strategic decision-making for the business. Despite their classification nature, decision trees and random forests are also applied in mining sales data, with random forest mitigating decision tree overfitting. Findings aligned between multiple linear regression and data visualization, revealing increasing sales on post-COVID-19. Sales peak on Saturdays, with the most effective sales hours observed from 3 to 8 p.m. (mode = 6 p.m.) daily. Promotions significantly impact sales, while other events have minimal effects. Drinks such as tea, yakult lychee, and matcha are dominating the sales as well as French fries. Light and party games, which typically last 15-45 minutes and accommodate 2-4, 2-6, and 2-12 players, are preferred for teaching players. These games often feature abstract and light themes, including mechanics such as dexterity, abstraction, tactics, and dice rolling.
Plum Analytics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
The author(s) assign to JGGAG licence to use this document for personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive licence to JGGAG to publish this document in full on the World Wide Web within the JGGAG website. Any other usage is prohibited without the express permission of the author(s).
References
[1] R. Fauzan, R. Supryanita, and R. Rahmatika, ‘ANALISA STRATEGI PEMASARAN UNTUK PENINGKATAN DAYA SAING PADA BISNIS KAFE DI KOTA BUKITTINGGI (STUDI KASUS KAFE TERAS KOTA)’, Jurnal Manajemen Bisnis Syariah, vol. 1, no. 1, Art. no. 1, Apr. 2021, doi: 10.31958/mabis.v1i1.2835.
[2] Dinas Komunikasi, Informatika, Statistik dan Persandian Kota Semarang, ‘Portal Semarang Satu Data’. Accessed: Apr. 28, 2024. [Online]. Available: https://data.semarangkota.go.id/data/list/4
[3] A. Ballang, A. K. Pongtuluran, and R. Tangdialla, ‘Pengaruh Lokasi Dan Fasilitas Terhadap Kepuasan Pelanggan di Cafe Mie Setang Kecamatan Rantepao Kabupaten Toraja Utara’, MENAWAN : Jurnal Riset dan Publikasi Ilmu Ekonomi, vol. 1, no. 6, pp. 113–125, Oct. 2023, doi: 10.61132/menawan.v1i6.74.
[4] A. A. Makhbuby and R. Himmati, ‘PROMOTION MIX UNTUK MENINGKATKAN VOLUME PENJUALAN COFFE BERBASIS TAKE AWAY PADA CAFE PESEN KOPI KOTA BLITAR’, Jurnal Cakrawala Ilmiah, vol. 1, no. 12, Art. no. 12, Aug. 2022, doi: 10.53625/jcijurnalcakrawalailmiah.v1i12.3216.
[5] M. A. Gama, ‘STRATEGI KOMUNIKASI PEMASARAN KOPI TJANGKIR 13’, Jurnal Ilmu Sosial dan Ilmu Politik (JISIP), vol. 7, no. 2, 2018, doi: 10.33366/jisip.v7i2.1588.
[6] S. A. Santoso, ‘Pengaruh Variasi Menu, Harga, Jam Kerja, Dan Lama Usaha Terhadap Pendapatan Warung Tegal Di Kecamatan Ciputat Timur’, bachelorThesis, Fakultas Ekonomi dan Bisnis Uin Jakarta, 2019. Accessed: Apr. 28, 2024. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/47938
[7] R. Ridwan, H. Lubis, and P. Kustanto, ‘Implementasi Algoritma Neural Network dalam Memprediksi Tingkat Kelulusan Mahasiswa’, JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, Art. no. 2, Apr. 2020, doi: 10.30865/mib.v4i2.2035.
[8] J. Zou and H. Li, ‘Precise Marketing of E-Commerce Products Based on KNN Algorithm’, Computational Intelligence and Neuroscience, vol. 2022, pp. 1–12, Aug. 2022, doi: 10.1155/2022/4966439.
[9] Badan Pengembangan dan Pembinaan Bahasa, ‘Hasil Pencarian - KBBI VI Daring’. Accessed: Apr. 28, 2024. [Online]. Available: https://kbbi.kemdikbud.go.id/entri/kafe
[10] Michael and A. Rahman, ‘Kafe dan Gaya Hidup: Studi pada Pengunjung Kafe di Wilayah Barombong Kota Makassar’, Jurnal Multidisiplin Madani, vol. 2, no. 10, Art. no. 10, Oct. 2022, doi: 10.55927/mudima.v2i10.1548.
[11] Isa, ‘Tips Buka Usaha Board Game Cafe #3: Karyawan’. Accessed: Apr. 28, 2024. [Online]. Available: https://boardgame.id/?p=56265
[12] A. R. Riszky and M. Sadikin, ‘Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan’, Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 3, pp. 103–108, Jul. 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.
[13] T. Taslim and F. Fajrizal, ‘Penerapan algorithma k-mean untuk clustering data obat pada puskesmas rumbai’, Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 7, no. 2, pp. 108–114, Nov. 2016, doi: 10.31849/digitalzone.v7i2.602.
[14] H. Kurniawan, S. Defit, and Sumijan, ‘Data Mining Menggunakan Metode K-Means Clustering Untuk Menentukan Besaran Uang Kuliah Tunggal’, Journal of Applied Computer Science and Technology, vol. 1, no. 2, Art. no. 2, Dec. 2020, doi: 10.52158/jacost.v1i2.102.
[15] - Ahyani Junia Karlina, ‘Estimasi Hasil Panen Ayam Pedaging Menggunakan Algoritma Regresi Linear Berganda’, Estimasi Hasil Panen Ayam Pedaging Menggunakan Algoritma Regresi Linear Berganda, vol. 3, no. 6, Art. no. 6, Jun. 2023.
[16] A. T. Nurani, A. Setiawan, and B. Susanto, ‘Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma’, Jurnal Sains dan Edukasi Sains, vol. 6, no. 1, Art. no. 1, May 2023, doi: 10.24246/juses.v6i1p34-43.
[17] H. M. Asmara and S. T. Fatah Yasin Al Irsyadi, ‘Analisa Perbandingan Hasil Pohon Keputusan Dengan Gain Ratio, Information Gain, Dan Gini Index Pada Pemasaran Produk Herbal di CV. Al-Ghuroba’, diploma, Universitas Muhammadiyah Surakarta, 2016. Accessed: Apr. 28, 2024. [Online]. Available: https://eprints.ums.ac.id/47859/
[18] S. J. Rigatti, ‘Random Forest’, Journal of Insurance Medicine, vol. 47, no. 1, pp. 31–39, Jan. 2017, doi: 10.17849/insm-47-01-31-39.1.
[19] E. Kasuya, ‘On the use of r and r squared in correlation and regression’, Ecological Research, vol. 34, no. 1, pp. 235–236, 2019, doi: 10.1111/1440-1703.1011.
[20] C. J. Willmott and K. Matsuura, ‘Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance’, Climate Research, vol. 30, no. 1, pp. 79–82, Dec. 2005, doi: 10.3354/cr030079.