YOLO-based Mobile Legends Match Result Parsing
Main Article Content
Abstract
MOBA competitive gaming can benefit from AI advancement. However, data availability is a major issue for Mobile Legends, as opposed to more mature MOBA. In order to obtain high amount of data, it has to be crowdsourced, but it is only viable to collect screenshots. In this paper we propose a framework to automatically parse mobile legends match result screenshots based on YOLO. YOLO is used to locate and classify objects. Text objects are then parsed with OCR. The results are evaluated and compared with older approach using CNN classifiers. The new approach is 25 times faster while achieving the same perfect performance as the old CNN classifier approach.
Plum Analytics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The author(s) assign to JGGAG licence to use this document for personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive licence to JGGAG to publish this document in full on the World Wide Web within the JGGAG website. Any other usage is prohibited without the express permission of the author(s).
References
activeplayer.io, ‘Mobile Legends: Bang Bang Live Player Count and Statistics’, activeplayer.io, 2023. https://activeplayer.io/mlbb/ (accessed May 30, 2023).
S. D. Maarif, ‘Jadwal MPL S11 2023: Daftar Tim, Format, Prize Pool, Cara Nonton’, tirto.id, 2023. https://tirto.id/jadwal-mpl-s11-2023-daftar-tim-format-prize-pool-cara-nonton-gCl5 (accessed May 30, 2023).
C. W. Surbakti, ‘Distribusi prize pool M4 World Championship’, oneesports.id, 2023. https://www.oneesports.id/mobile-legends/prize-pool-m4-world-championship/ (accessed May 30, 2023).
D. Gourdeau and L. Archambault, ‘Discriminative Neural Network for Hero Selection in Professional Heroes of the Storm and DOTA 2’, IEEE Trans. Games, vol. 13, no. 4, pp. 380–387, 2021, doi: 10.1109/TG.2020.2972463.
H. Lee, D. Hwang, H. Kim, B. Lee, and J. Choo, DraftRec: Personalized Draft Recommendation for Winning in Multi-Player Online Battle Arena Games, vol. 1, no. 1. Association for Computing Machinery, 2022. doi: 10.1145/3485447.3512278.
S. J. Hong, S. K. Lee, and S. Il Yang, ‘Champion Recommendation System of League of Legends’, Int. Conf. ICT Converg., vol. 2020-Octob, pp. 1252–1254, 2020, doi: 10.1109/ICTC49870.2020.9289546.
Z. Chen et al., ‘The Art of Drafting: A Team-Oriented Hero Recommendation System for Multiplayer Online Battle Arena Games’, 2018, [Online]. Available: http://arxiv.org/abs/1806.10130
S. Chen, M. Zhu, D. Ye, W. Zhang, Q. Fu, and W. Yang, ‘Which Heroes to Pick? Learning to Draft in MOBA Games with Neural Networks and Tree Search’, IEEE Trans. Games, vol. 13, no. 4, pp. 410–421, 2021, doi: 10.1109/TG.2021.3095264.
A. Summerville, M. Cook, and B. Steenhuisen, ‘Draft-Analysis of the ancients: Predicting draft picks in DotA 2 using machine learning’, AAAI Work. - Tech. Rep., vol. WS-16-21-, no. Godec, pp. 100–106, 2016, doi: 10.1609/aiide.v12i2.12899.
Y. Shen, J. Zhou, W. Lin, and Z. Feng, ‘A Deep Learning Supported Sequential Recommendation Mechanism for Ban-Pick in MOBA Games’, 2022 2nd IEEE Int. Conf. Softw. Eng. Artif. Intell. SEAI 2022, pp. 259–265, 2022, doi: 10.1109/SEAI55746.2022.9832346.
T. Inzitari, B. Lyons, and N. Al, Predicting pick-ban sequence in League of Legends games, vol. 5, no. CSCW1. Association for Computing Machinery, 2021.
J. L. Putra and S. Seimahuira, ‘Memprediksi Pola Ban Hero Pada Game Mobile Legends Menggunakan Algoritma Apriori’, Comput. Sci., vol. 1, no. 2, pp. 155–160, 2021, doi: 10.31294/coscience.v1i2.512.
CA Tanjung, ‘Sistem Penentuan Hero Counter pada Game Mobile Legends dengan Logika Fuzzy Metode Mamdani’, 2018.
A. T. Susilo, H. Setiawan, R. A. Saputro, T. Purwadi, and A. Saifudin, ‘Penggunaan Metode Naïve Bayes untuk Memprediksi Tingkat Kemenangan pada Game Mobile Legends’, J. Teknol. Sist. Inf. dan Apl., vol. 4, no. 1, p. 46, 2021, doi: 10.32493/jtsi.v4i1.7807.
A. Dharmawan, J. Gondohanindijo, Y. Prihati, and T. Hafidzin, ‘Optimization of Players and Game Win Prediction Using Naïve Bayes Algorithm’, J. Elektro Luceat, vol. 8, no. 1, 2022.
A. Chazhoor and V. R. Sarobin, ‘Intelligent automation of invoice parsing using computer vision techniques’, Multimed. Tools Appl., vol. 81, no. 20, pp. 29383–29403, 2022, doi: 10.1007/s11042-022-12916-x.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘You only look once: Unified, real-time object detection’, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.
M. Hussain, ‘YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection’, Machines, vol. 11, no. 7, 2023, doi: 10.3390/machines11070677.
M. R. Nur, ‘Mobile Legends Match Result Object Detection Dataset’, Kaggle, 2023. https://www.kaggle.com/datasets/rizqinur/mobile-legends-match-result-object-detection (accessed Dec. 24, 2023).
M. R. Nur, ‘R-N/ml_draftpick_dss: Mobile legends draft pick decision support system’, Github, 2023. https://github.com/R-N/ml_draftpick_dss (accessed May 08, 2024).
A. Howard, W. Wang, G. Chu, L. Chen, B. Chen, and M. Tan, ‘Searching for MobileNetV3’, in International Conference on Computer Vision, 2019, pp. 1314–1324.