Shortest Path with Dynamic Weight Implementation using Dijkstra’s Algorithm

Authors

  • Elizabeth Nurmiyati Tamatjita Sekolah Tinggi Teknologi Adisutjipto
  • Aditya Wikan Mahastama Universitas Kristen Duta Wacana

DOI:

https://doi.org/10.21512/comtech.v7i3.2534

Keywords:

shortest path, dynamic weight, Dijkstra’s algorithm, graph, digraph

Abstract

Shortest path algorithms have been long applied to solve daily problems by selecting the most feasible route with minimum cost or time. However, some of the problems are not simple. This study applied the case using Dijkstra's algorithm on a graph representing street routes with two possible digraphs: one-way and twoway. Each cost was able to be changed anytime, representing the change in traffic condition. Results show that the usage of one way digraph in mapping the route does make the goal possible to reach, while the usage of twoway digraph may cause confusion although it is probably the possible choice in the real world. Both experiments showed that there are no additional computation stresses in re-calculating the shortest path while going halfway to reach the goal.
Dimensions

Plum Analytics

Author Biographies

Elizabeth Nurmiyati Tamatjita, Sekolah Tinggi Teknologi Adisutjipto

Department of Informatics

Aditya Wikan Mahastama, Universitas Kristen Duta Wacana

Depatment of Informatics, Faculty of Information Technology

References

Astuti, Y. D. (2015). Dasar Teori Grafin “Logika dan Algoritma” lecture notes. Retrieved February 18, 2015 from http://rifki_kosasih.staff.gunadarma.ac.id/Downloads/files/37568/Bab+1++Dasar+Teori+Graf.pdf

Arifianto, S. (2012). Sistem Aplikasi Penentuan Rute Terpendek Pada Jaringan Multi Moda Transportasi Umum Menggunakan Algoritma Dijkstra (Master’s thesis). Semarang: Program Studi Sistem Informasi, Program Pascasarjana Universitas Diponegoro

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271

Djojo, M. A., & Karyono. (2013). Pengukuran Beban Komputasi Algoritma Dijkstra, A*, dan Floyd-Warshall pada Perangkat Android. ULTIMA Computing, 5(1), 13-17.

Głabowski, M., Musznicki, B., Nowak, P., & Zwierzykowski, P. (2013). Efficiency Evaluation of Shortest Path Algorithms. In The Ninth Advanced International Conference on Telecommunications (AICT) 2013 Proceedings (pp. 154-160). Rome, Italy.

Harju, T. (2011). Lecture Notes on Graph Theory, Department of Mathematics, University of Turku, Finland. Retrieved February 18, 2015 from http://cs.bme.hu/fcs/graphtheory.pdf

Prasetyo, V. Z. (2013). Penerapan Algoritma Dijkstra Untuk Perutean Adaptif Pada Jaringan Pendistribusian Air PDAM di Kabupaten Demak (Bachelor’s thesis). Semarang: Jurusan Matematika, Fakultas MIPA, Universitas Negeri Semarang

Rodrigue, J-P., & Ducruet, C. (2015). Graph Theory: Measures and Indices. Retrieved February 18, 2015 from https://people.hofstra.edu/geotrans/eng/methods/ch1m3en.html

Ruohonen, K. (2013). Graph Theory. Retrieved February 18, 2015 from http://math.tut.fi/ ~ruohonen/GT_English.pdf

Sholichin, R., Yasindan, M., & Oktoviana, L. T. (2012). Implementasi Algoritma Dijkstra Dalam Pencarian Lintasan Terpendek Lokasi Rumah Sakit, Hotel Dan Terminal Kota Malang Berbasis Web. Jurnal Online Universitas Negeri Malang, (Online).

Sunaryo, Siang, J. J., & Chrismanto, A. R. (2012). Pencarian Jalur Terpendek Antar Kota Di Jawa Tengah Dan D.I. Yogyakarta Dengan Algoritma Dijkstra Via SMS Gateway (Bachelor’s thesis). Yogyakarta: Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Kristen Duta Wacana

Triansyah, F. A. (2013). Implementasi Algoritma Dijkstra Dalam Aplikasi Untuk Menentukan Lintasan Terpendek Jalan Darat Antar Kota Di Sumatera Bagian Selatan. Jurnal Sistem Informasi (JSI), 5(2), 611-621.

Downloads

Published

2016-09-30

Issue

Section

Articles
Abstract 960  .
PDF downloaded 627  .