Nighttime Motorcycle Detection for Sparse Traffic Images Using Machine Learning

Authors

  • Pov Vandeth Senior Unit Manager, Digital Project Management at Hattha Bank, Cambodia
  • Jimmy Tirtawangsa School of Computing, Telkom University
  • Hertog Nugroho Politeknik Negeri Bandung https://orcid.org/0000-0002-6602-9063

DOI:

https://doi.org/10.21512/commit.v17i1.8443

Keywords:

Nighttime Motorcycle Detection, Sparse Traffic Images, Machine Learning

Abstract

Traffic accidents often occur at night. It is understandable, since at night, people have low visibility. Many efforts to develop tools to detect nearby vehicles to avoid crashes have been reported. However, most of them worked only on detecting cars. The research aims to detect motorcycles at night, to complement the previous studies, which mainly focused on cars. The research introduces four features which are extracted from the red pixel and edge map. The algorithm to extract the features has also been developed. They are applied to three commonly used classifiers: Artificial Neural Network (ANN), Decision Tree, and Support Vector Machine (SVM) classifiers to validate the effectiveness of the features. Since the public dataset related to the research is not available yet, the nighttime videos from YouTube have been collected. The datasets contain all the various levels of darkness. They are divided into an 80-20 ratio for training and testing sets to support the experiment and measure the validity of the proposed method. As the best result, the detection using ANN can detect motorcycle proposals with accuracy of 72.71%, precision of 65.10% and recall of 73.33%. Furthermore, during the experiment, the classification can perform consistently in 0.04 seconds per image. Therefore, the method is suitable for use in a real-time system.

Dimensions

Plum Analytics

References

M. Choudhary, “What is intelligent transport system and how it works?” 2019. [Online]. Available: https://bit.ly/2YnQ7ys

Badan Pusat Statistik Provinsi DKI Jakarta, “Jumlah korban kecelakaan lalu lintas menurut jenis kendaraan bermotor di provinsi DKI Jakarta 2021,” 2021. [Online]. Available: https: //bit.ly/3ZIWcFJ

H. Kuang, K. F. Yang, L. Chen, Y. J. Li, L. L. H. Chan, and H. Yan, “Bayes saliency-based object proposal generator for nighttime traffic images,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 814–825, 2017.

F. Gao, Y. Ge, S. Lu, and Y. Zhang, “Online vehicle detection at nighttime-based tail-light pairing with saliency detection in the multi-lane intersection,” IET Intelligent Transport Systems, vol. 13, no. 3, pp. 515–522, 2019.

C. L. Jen, Y. L. Chen, and H. Y. Hsiao, “Robust detection and tracking of vehicle taillight signals using frequency domain feature based Adaboost learning,” in 2017 IEEE International Conference on Consumer Electronics-Taiwan (ICCETW). Taipei, Taiwan: IEEE, June 12–14, 2017, pp. 423–424.

T.-A. Pham and M. Yoo, “Nighttime vehicle detection and tracking with occlusion handling by pairing headlights and taillights,” Applied Sciences, vol. 10, no. 11, pp. 1–18, 2020.

H. Kuang, L. Chen, L. L. H. Chan, R. C. C. Cheung, and H. Yan, “Feature selection based on tensor decomposition and object proposal for night-time multiclass vehicle detection,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 1, pp. 71–80, 2018.

X. Zhang, B. Story, and D. Rajan, “Night time vehicle detection and tracking by fusing sensor cues from autonomous vehicles,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Antwerp, Belgium: IEEE, May 25–28, 2020, pp. 1–7.

C. Fern´andez, D. F. Llorca, M. A. Sotelo, I. G. Daza, A. M. Hell´ın, and S. A´ lvarez, “Real-time vision-based blind spot warning system: Experiments with motorcycles in daytime/nighttime conditions,” International Journal of Automotive Technology, vol. 14, no. 1, pp. 113–122, 2013.

Y. Miao, F. Liu, T. Hou, L. Liu, and Y. Liu, “A nighttime vehicle detection method based on YOLO v3,” in 2020 Chinese Automation Congress (CAC). Shanghai, China: IEEE, Nov. 6–8, 2020, pp. 6617–6621.

S. Huang, Y. He, and X. A. Chen, “M-YOLO: A nighttime vehicle detection method combining Mobilenet v2 and YOLO v3,” Journal of Physics: Conference Series, vol. 1883, pp. 1–6, 2021.

D. Huang, Z. Zhou, M. Deng, and Z. Li, “Nighttime vehicle detection based on direction attention network and bayes corner localization,” Journal of Intelligent & Fuzzy Systems, vol. 41, no. 1, pp. 783–801, 2021.

H. K. Leung, X.-Z. Chen, C. W. Yu, H. Y. Liang, J. Y. Wu, and Y. L. Chen, “A deep-learningbased vehicle detection approach for insufficient and nighttime illumination conditions,” Applied Sciences, vol. 9, no. 22, pp. 1–27, 2019.

Y. Mo, G. Han, H. Zhang, X. Xu, and W. Qu, “Highlight-assisted nighttime vehicle detection using a multi-level fusion network and label hierarchy,” Neurocomputing, vol. 355, pp. 13–23, 2019.

C. T. Lin, S. W. Huang, Y. Y. Wu, and S. H. Lai, “GAN-based day-to-night image style transfer for nighttime vehicle detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 2, pp. 951–963, 2020.

S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images by border following,” Computer Vision, Graphics, and Image Processing, vol. 30, no. 1, pp. 32–46, 1985.

J. Sklansky, “Finding the convex hull of a simple polygon,” Pattern Recognition Letters, vol. 1, no. 2, pp. 79–83, 1982.

P. Danielsson and O. Seger, “Generalized and separable sobel operators,” in Machine vision for three-dimensional scenes. Elsevier, 1990, pp. 347–379.

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Cartographica: The International Journal for Geographic Information and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

J. Stewart, Calculus. Thomson, 2008.

J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for neural networks,” Journal of Big Data, vol. 7, no. 1, pp. 1–41, 2020.

I. D. Mienye, Y. Sun, and Z. Wang, “Prediction performance of improved decision tree-based algorithms: A review,” Procedia Manufacturing, vol. 35, pp. 698–703, 2019.

D. A. Pisner and D. M. Schnyer, “Support vector machine,” in Machine learning. Elsevier, 2020, pp. 101–121.

F. Anowar, S. Sadaoui, and B. Selim, “Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, T-SNE),” Computer Science Review, vol. 40, pp. 1–13, 2021.

D. M. Vida, “Improving decision tree and neural network learning for evolving data-streams,” Ph.D. dissertation, Departament d’Arquitectura de Computadors, Universitat Polit`ecnica de Catalunya, 2019.

M. Pak and S. Kim, “A review of deep learning in image recognition,” in 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT). Kuta Bali, Indonesia: IEEE, Aug. 8–10, 2017, pp. 1–3.

Downloads

Published

2023-03-17
Abstract 442  .
PDF downloaded 456  .