Lung Nodule Texture Detection and Classification Using 3D CNN

Authors

DOI:

https://doi.org/10.21512/commit.v13i2.5995

Keywords:

Image Processing, Lung Nodule, Pattern Recognition, Convolutional Neural Network, Transfer Learning

Abstract

Following artificial intelligence implementation in computer vision field, especially deep learning, many Computer-Aided Diagnosis (CAD) tools are proposed to help to detect lung cancer by the scoring system or by identifying the characteristics of nodules. However, lung cancer is a clinical diagnosis which does not provide detailed information needed by radiologists and clinician to prevent unnecessary invasive diagnostic procedures compared to lung nodule texture detection and classification. Hence, to answer this problem, this research explores the steps needed to implement 3D CNN on raw thorax CT scan datasets and usage of RetinaNet 3D + Inception 3D with transfer learning. The 3D CNN CAD tools can improve the speed, performance, and ability to detect lung nodule texture instead of malignancy status done by previous studies. This research implements 3D CNN on Moscow private datasets acquired from NVIDIA Asia Pacific. The proposed method of data conversion can minimize information loss from raw data to 3D CNN input data. On training phase, after 100 epochs, the researchers conclude that the best-proposed model (3D CNN with transfer learning of pretrained LIDC public datasets weight) provides 22.86% of mean average precision (mAP) detection capability and 70.36% of Area Under the Curve (AUC) in Moscow private dataset lung texture detection tasks. It outperforms non-transfer learning 3D CNN model (trained from scratch) and 3D CNN with transfer learning of pre-trained ImageNet weight.

Dimensions

Plum Analytics

Author Biography

Ivan William Harsono, Bina Nusantara University

Master of Computer Science Postgraduates

References

G. D. Rubin, “Lung nodule and cancer detection in CT screening,” Journal of Thoracic Imaging, vol. 30, no. 2, p. 130, 2015.

S. J. Swensen, R. W. Viggiano, D. E. Midthun, N. L. Muller, A. Sherrick, K. Yamashita, D. P. Naidich, E. F. Patz, T. E. Hartman, J. R. Muhm, and A. L. Weaver, “Lung nodule enhancement at CT: Multicenter study,” Radiology, vol. 214, no. 1, pp. 73–80, 2000.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. S´anchez, “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.

S. A. Bolliger, L. Oesterhelweg, D. Spendlove, S. Ross, and M. J. Thali, “Is differentiation of frequently encountered foreign bodies in corpses possible by hounsfield density measurement?” Journal of Forensic Sciences, vol. 54, no. 5, pp. 1119–1122, 2009.

M. J. Budoff and J. S. Shinbane, Handbook of cardiovascular CT: Essentials for clinical practice. Springer Science & Business Media, 2008.

W. Herring, Learning radiology: Recognizing the basics. Saunders, 2011.

F. Ciompi, B. de Hoop, S. J. van Riel, K. Chung, E. T. Scholten, M. Oudkerk, P. A. de Jong, M. Prokop, and B. van Ginneken, “Automatic classification of pulmonary peri-fissural nodules in Computed Tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box,” Medical Image Analysis, vol. 26, no. 1, pp. 195–202, 2015.

Q. Dou, H. Chen, L. Yu, J. Qin, and P.-A. Heng, “Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 7, pp. 1558–1567, 2017.

K. L. Hua, C. H. Hsu, S. C. Hidayati, W. H. Cheng, and Y. J. Chen, “Computer-aided classification of lung nodules on Computed Tomography images via deep learning technique,” OncoTargets and Therapy, vol. 8, pp. 1–8, 2015.

Kementerian Kesehatan Republik Indonesia. (2016) Informasi SDM kesehatan Indonesia. [Online]. Available: http://www.depkes.go.id/development/site/tenaga-kesehatan/

W. Novitaria, P. A. Wigati, and A. Sriatmi, “Analisis kesiapan pelaksanaan sosialisasi Program Ambulance Hebat dalam rangka dukungan terhadap sistem penanggulangan gawat darurat terpadu di Kota Semarang,” Jurnal Kesehatan Masyarakat (E-Journal), vol. 5, no. 4, pp. 164–171, 2017.

C. R. Nasution. (2016) Kebijakan dalam implementasi SPGDT di Indonesia. [Online]. Available: https://bit.ly/2NyYqUN

Pusat Data dan Informasi Kementerian Kesehatan Republik Indonesia. (2015) Situasi global penyakit kanker. [Online]. Available: http://www.depkes.go.id/resources/download/pusdatin/infodatin/infodatin-kanker.pdf

H. C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep Convolutional Neural Networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1285–1298, 2016.

S. G. Armato III, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman et al., “The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans,” Medical Physics, vol. 38, no. 2, pp. 915–931, 2011.

C. Rampinelli, D. Origgi, and M. Bellomi, “Lowdose CT: Technique, reading methods and image interpretation,” Cancer Imaging, vol. 12, no. 3, p. 548, 2012.

R. Kakinuma, N. Moriyama, Y. Muramatsu, S. Gomi, M. Suzuki, H. Nagasawa, M. Kusumoto, T. Aso, Y. Muramatsu, T. Tsuchida et al., “Ultrahigh- resolution Computed Tomography of the lung: Image quality of a prototype scanner,” PloS One, vol. 10, no. 9, p. e0137165, 2015.

B. Van Ginneken, A. A. Setio, C. Jacobs, and F. Ciompi, “Off-the-shelf Convolutional Neural Network features for pulmonary nodule detection in Computed Tomography scans,” in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). New York, NY, USA: IEEE, April 16–19 , 2015, pp. 286–289.

M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, “Lung pattern classification for interstitial lung diseases using a deep convolutional neural network,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1207–1216, 2016.

K. Yan, L. Lu, and R. M. Summers, “Unsupervised body part regression via spatially selfordering convolutional neural networks,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, DC, USA: IEEE, April 4–7, 2018, pp. 1022–1025.

W. Shen, M. Zhou, F. Yang, C. Yang, and J. Tian, “Multi-scale Convolutional Neural Networks for lung nodule classification,” in International Conference on Information Processing in Medical Imaging. Sabhal Mor Ostaig, Isle of Skye, UK: Springer, June 28–July 3, 2015, pp. 588–599.

F. Liao, M. Liang, Z. Li, X. Hu, and S. Song, “Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-or network,” IEEE Transactions on Neural Networks and Learning Systems, 2019.

S. Hussein, K. Cao, Q. Song, and U. Bagci, “Risk stratification of lung nodules using 3D CNN-based multi-task learning,” in International conference on information processing in medical imaging. Boone, NC, USA: Springer, June 25–30, 2017, pp. 249–260.

R. Dey, Z. Lu, and Y. Hong, “Diagnostic classification of lung nodules using 3D neural networks,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, DC, USA: IEEE, April 4–7, 2018, pp. 774–778.

S. P. Power, F. Moloney, M. Twomey, K. James, O. J. O’Connor, and M. M. Maher, “Computed Tomography and patient risk: Facts, perceptions and uncertainties,” World Journal of Radiology, vol. 8, no. 12, pp. 902–915, 2016.

H. Greenspan, B. Van Ginneken, and R. M. Summers, “Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153–1159, 2016.

P. Ongsulee, “Artificial intelligence, machine learning and deep learning,” in 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE). Bangkok, Thailand: IEEE, Nov. 22–24, 2017, pp. 1–6.

J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, June 20–25, 2009, pp. 248–255.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, United States, June 26–July 1, 2016, pp. 770–778.

Y. Le Cun, “A theoretical framework for backpropagation,” Proceedings of the 1988 Connectionist Models Summer School, CMU, Pittsburg, PA, vol. 1, pp. 21–28, 1988.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, Dec. 3–6, 2012, pp. 1097–1105.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat: Integrated recognition, localization and detection using convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, June 23–28, 2014, pp. 580–587.

R. Girshick, “Fast R-CNN,” in IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, Oct. 27–Nov. 2, 2015, pp. 1440–1448.

K. He, G. Gkioxari, P. Doll´ar, and R. Girshick, “Mask R-CNN,” in IEEE International Conference on Computer Vision (ICCV), Venice, Italy, Oct. 22–29, 2017, pp. 2961–2969.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” in Advances in Neural Information Processing Systems, Montreal, Canada, Dec. 7–12, 2015, pp. 91–99.

W. Lindsay, J. Wang, N. Sachs, E. Barbosa, and J. Gee, “Transfer learning approach to predict biopsy-confirmed malignancy of lung nodules from imaging data: A pilot study,” in Image Analysis for Moving Organ, Breast, and Thoracic Images. Granada, Spain: Springer, Sep. 16 and 20, 2018, pp. 295–301.

E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-mimic: Deep multitask and transfer reinforcement learning,” arXiv preprint arXiv:1511.06342, 2015.

J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new model and the kinetics dataset,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, United States, Jul 21–26, 2017, pp. 6299–6308.

T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Doll´ar, “Focal loss for dense object detection,” in IEEE International Conference on Computer Vision (ICCV), Venice, Italy, Oct. 22–29, 2017, pp. 2980–2988.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, “SSD: Single shot multibox detector,” in European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, Oct. 11–14, 2016, pp. 21–37.

P. Soviany and R. T. Ionescu, “Optimizing the trade-off between single-stage and two-stage object detectors using image difficulty prediction,” arXiv preprint arXiv:1803.08707, 2018.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, United States, June 26–Jul 1, 2016, pp. 779–788.

T. Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid net-works for object detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, United States, July 21–26, 2017, pp. 2117–2125.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Engineer, vol. 29, no. 6, pp. 33–41, 1984.

P. F. Jaeger, S. A. Kohl, S. Bickelhaupt, F. Isensee, T. A. Kuder, H.-P. Schlemmer, and K. H. Maier-Hein, “Retina U-Net: Embarrassingly simple exploitation of segmentation supervision for medical object detection,” ArXiv Preprint ArXiv:1811.08661, 2018.

R. Anirudh, J. J. Thiagarajan, T. Bremer, and H. Kim, “Lung nodule detection using 3D Convolutional Neural Networks trained on weakly labeled data,” in Medical Imaging 2016: Computer-Aided Diagnosis, vol. 9785. San Diego, California, United States: International Society for Optics and Photonics, Feb. 27–March 3, 2016, p. 978532.

W. Zhu, C. Liu, W. Fan, and X. Xie, “Deeplung: Deep 3D dual path nets for automated pulmonary nodule detection and classification,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe, NV, USA: IEEE, Mar. 12–15, 2018, pp. 673–681.

F. E. Boas and D. Fleischmann, “CT artifacts: Causes and reduction techniques,” Imaging in Medicine, vol. 4, no. 2, pp. 229–240, 2012.

A. Fedorov, R. Beichel, J. Kalpathy Cramer, J. Finet, J. C. Fillion Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka et al., “3D slicer as an image computing platform for the quantitative imaging network,” Magnetic Resonance Imaging, vol. 30, no. 9, pp. 1323–1341, 2012.

D. M. Hansell, A. A. Bankier, H. MacMahon, T. C. McLoud, N. L. Muller, and J. Remy, “Fleischner society: Glossary of terms for thoracic imaging,” Radiology, vol. 246, no. 3, pp. 697–722, 2008.

Downloads

Published

2019-10-31
Abstract 1530  .
PDF downloaded 574  .