Use of Data Mining for Prediction of Customer Loyalty

Authors

  • Andri Wijaya Bina Nusantara University
  • Abba Suganda Girsang Bina Nusantara University

DOI:

https://doi.org/10.21512/commit.v10i1.1660

Keywords:

Customer loyalty, Attribute analysis, C4.5, Naiv¨e Bayes, Nearest Neighbor Algorithmghbor algorithms

Abstract

This  article  discusses  the  analysis  of  customer  loyalty  using  three  data  mining  methods:  C4.5,Naive Bayes, and Nearest Neighbor Algorithms and real-world  empirical  data.  The  data  contain  ten  attributes related to the customer loyalty and are obtained from a national  multimedia  company  in  Indonesia.  The  dataset contains 2269 records. The study also evaluates the effects of  the  size  of  the  training  data  to  the  accuracy  of  the classification.  The  results  suggest  that  C4.5  algorithm produces   highest classification   accuracy   at   the   order of  81%  followed  by  the  methods  of  Naive  Bayes  76% and  Nearest  Neighbor  55%.  In  addition,  the  numerical evaluation  also  suggests  that  the  proportion  of  80%  is optimal  for  the  training  set.
Dimensions

Plum Analytics

Author Biographies

Andri Wijaya, Bina Nusantara University

Master of Information Technology

Abba Suganda Girsang, Bina Nusantara University

Master of Information Technology

References

Y. Richter, E. Yom-Tov, and N. Slonim, “Predicting customer churn in mobile networks through analysis of social groups.” in Proceedings of the 2010 SIAM International Conference on Data Mining, vol. 2010. SIAM, 2010, pp. 732–741.

C.-F. Tsai and M.-Y. Chen, “Variable selection by association rules for customer churn prediction of multimedia on demand,” Expert Systems with Applications, vol. 37, no. 3, pp. 2006–2015, 2010.

S. Daskalaki, I. Kopanas, M. Goudara, and N. Avouris, “Data mining for decision support on customer insolvency in telecommunications business,” European Journal of Operational Research, vol. 145, no. 2, pp. 239–255, 2003.

I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2005.

D. T. Larose, An introduction to data mining, 2005, vol. 2.

S. Susanto and D. Suryadi, Pengantar Data Mining: Menggali Pengetahuan dari Bongkahan

Data. Andi Publisher, 2010.

V. Carlo, Business intelligence: data mining and optimization for decision making. John Wiley and Sons, 2009.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in data mining,” Knowledge and information systems, vol. 14, no. 1, pp. 1–37, 2008.

J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.

M. Bramer, Principles of data mining. Springer, 2007, vol. 180.

Kusrini and E. Taufiq, Algoritma Data Mining. Andi Offset, 2009.

S. Ghosh, S. Biswas, D. Sarkar, and P. P. Sarkar, “A tutorial on different classification techniques for remotely sensed imagery datasets.” Smart CR, vol. 4, pp. 34–43, 2014.

R. J. Jadhav and U. T. Pawar, “Churn prediction in telecommunication using data mining technology,” International Journal of Advanced Computer Science and Applications, vol. 2, no. 2, pp. 17–19, 2011.

A. A. Khan, S. Jamwal, and M. Sepehri, “Applying data mining to customer churn prediction in an internet service provider,” International Journal of Computer Applications, vol. 9, no. 7,pp. 8–14, 2010.

P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth, “Crisp-dm 1.0 step-by-step data mining guide,” The CRISP-DM consortium,Tech. Rep., Aug. 2000. [Online]. Available:http://www.crisp-dm.org/CRISPWP-0800.pdf

Downloads

Published

2015-05-31
Abstract 2114  .
PDF downloaded 1256  .