The Implementation of Control Charts as a Verification Tool in a Time Series Model for COVID-19 Vaccine Participants in Pontianak

Authors

  • Nurfitri Imro'ah Universitas Tanjungpura
  • Nur'ainul Miftahul Huda Universitas Tanjungpura
  • Abang Yogi Pratama Department of Communications and Informatics of Pontianak City

DOI:

https://doi.org/10.21512/comtech.v14i1.8462

Keywords:

control charts, verification tool, time series model, COVID-19, vaccine participants

Abstract

Vaccines are the primary weapon used to stop the outbreak, especially amid the COVID-19 pandemic. Thus, supplying vaccines to control the COVID-19 pandemic is essential, especially in minimizing the incidence and achieving herd immunity to break the chain of COVID-19. West Kalimantan has taken firm anticipatory steps to prevent COVID-19 in the form of a vaccination program in Indonesia. The highest vaccination achievement occurs in Pontianak City, the province’s capital. The research analyzed data on vaccine participants in Pontianak using time series analysis. In addition, the residuals from the time series model were used as observations in constructing the control chart. The research also analyzes the accuracy of the time series model using the Individual Moving Range (IMR) control chart. The results show that the ARIMA model (5,0,2) is the best because it fulfills the assumption of white noise. However, the ARIMA (5,0,2) model is inaccurate in making predictions because the residuals from the ARIMA (5,0,2) model are out of control (based on the IMR control chart). Hence, it is necessary to evaluate in determining the time series model. It can be analyzed using a control chart. Therefore, measuring the model’s accuracy on the best model is essential in predicting several subsequent periods.

Dimensions

Plum Analytics

Author Biographies

Nurfitri Imro'ah, Universitas Tanjungpura

Statistics Department

Nur'ainul Miftahul Huda, Universitas Tanjungpura

Mathematics Department

References

Abanda, A., Mori, U., & Lozano, J. A. (2019). A review on distance based time series classification. Data Mining and Knowledge Discovery, 33, 378–412. https://doi.org/10.1007/s10618-018-0596-4

Ahsan, M., Mashuri, M., Kuswanto, H., Prastyo, D. D., & Khusna, H. (2018). Multivariate control chart based on PCA mix for variable and attribute quality characteristics. Production & Manufacturing Research, 6(1), 364–384. https://doi.org/10.1080/21693277.2018.1517055

Abbasi, S. A., Abid, M., Riaz, M., & Nazir, H. Z. (2020). Performance evaluation of moving average-based EWMA chart for exponentially distributed process. Journal of the Chinese Institute of Engineers, 43(4), 365–372. https://doi.org/10.1080/02533839.2020.1719893

Alabdulrazzaq, H., Alenezi, M. N., Rawajfih, Y., Alghannam, B. A., Al-Hassan, A. A., & Al-Anzi, F. S. (2021). On the accuracy of ARIMA based prediction of COVID-19 spread. Results in Physics, 27(August), 1–17. https://doi.org/10.1016/j.rinp.2021.104509

Alevizakos, V., Chatterjee, K., & Koukouvinos, C. (2021). The triple exponentially weighted moving average control chart. Quality Technology & Quantitative Management, 18(3), 326–354. https://doi.org/10.1080/16843703.2020.1809063

Anwar, S. M., Aslam, M., Zaman, B., & Riaz, M. (2021). Mixed memory control chart based on auxiliary information for simultaneously monitoring of process parameters: An application in glass field. Computers & Industrial Engineering, 156(June), 1–18. https://doi.org/10.1016/j.cie.2021.107284

Arshad, A., Azam, M., Aslam, M., & Jun, C. H. (2022). A resubmission-based variable control chart. Communications in Statistics-Theory and Methods, 1–13. https://doi.org/10.1080/03610926.2022

Arooj, H., & Malik, K. I. (2022). Double moving average control chart for autocorrelated data. Scientific Inquiry and Review, 6(2), 1–20. https://doi.org/10.32350/sir.62.01

Aslam, M. (2019). Attribute control chart using the repetitive sampling under neutrosophic system. IEEE Access, 7, 15367–15374. https://doi.org/10.1109/ACCESS.2019.2895162

Bagmar, M. S. H., & Khudri, M. M. (2021). Application of box-Jenkins models for forecasting drought in north-western part of Bangladesh. Environmental Engineering Research, 26(3), 1–7. https://doi.org/10.4491/eer.2020.294

Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief, 29(April), 1–4. https://doi.org/10.1016/j.dib.2020.105340

Costa, A., & Fichera, S. (2021). Economic-statistical design of adaptive ARMA control chart for autocorrelated data. Journal of Statistical Computation and Simulation, 91(3), 623–647. https://doi.org/10.1080 /00949655.2020.1825716

Dinas Komunikasi dan Informatika Provinsi Kalimantan Barat. (2021). Distribusi vaksin COVID-19 di Kalimantan Barat. Retrieved from https://diskominfo.kalbarprov.go.id/17/01/2021/videodistribusi-vaksin-covid-19-di-kalimantan-barat/

Fan, W., Xue, H., Yi, C., & Xu, Z. (2021). TQWT-assisted statistical process control method for condition monitoring and fault diagnosis of bearings in high-speed rail. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 235(2), 230–240. https://doi.org/10.1177/1748006X20958321

Farimani, N. M., Parsafar, P., & Mohammadi, S. (2022). Evaluation performance of time series methods in demand forecasting: Box-Jenkins vs artificial neural network (Case study: Automotive parts industry). Journal of Statistical Computation and Simulation, 92, 3639–3658. https://doi.org/10.1080/00949655.2022.2077945

García, E., Peñabaena-Niebles, R., Jubiz-Diaz, M., & Perez-Tafur, A. (2022). Concurrent control chart pattern recognition: A systematic review. Mathematics, 10(6), 1–31. https://doi.org/10.3390/math10060934

Golilarz, N. A., Addeh, A., Gao, H., Ali, L., Roshandeh, A. M., Munir, H. M., & Khan, R. U. (2019). A new automatic method for control chart patterns recognition based on ConvNet and Harris Hawks meta heuristic optimization algorithm. IEEE Access, 7, 149398–149405. https://doi.org/10.1109/ACCESS.2019.2945596

Herdiani, E. T., Fandrilla, G., & Sunusi, N. (2018). Modified Exponential Weighted Moving Average (EWMA) control chart on autocorrelation data. Journal of Physics: Conference Series, 979, 1–7. https://doi.org/10.1088/1742-6596/979/1/012097

Hieu, H. T., Chou, T. Y., Fang, Y. M., & Hoang, T. V. (2018). Statistical process control methods for detecting outliers in GPS time series data. International Refereed Journal of Engineering and Science (IRJES), 7(5), 8–15.

Jafarian-Namin, S., Fallahnezhad, M. S., Tavakkoli-Moghaddam, R., Salmasnia, A., & Fatemi Ghomi, S. M. T. (2021). An integrated quality, maintenance and production model based on the delayed monitoring under the ARMA control chart. Journal of Statistical Computation and Simulation, 91(13), 2645–2669. https://doi.org/10.1080/00949655.2021.1904241

Katoch, R., & Sidhu, A. (2021). An application of ARIMA model to forecast the dynamics of COVID-19 epidemic in India. Global Business Review. https://doi.org/10.1177/0972150920988653

Kementerian Kesehatan Republik Indonesia. (2021). Frequently Asked Questions (FAQ) seputar pelaksanaan vaksinasi COVID-19. Retrieved from https://kesmas.kemkes.go.id/assets/uploads/contents/others/FAQ_VAKSINASI_COVID__call_center.pdf

Koutras, M. V., & Triantafyllou, I. S. (2020). Recent advances on univariate distribution-free Shewharttype control charts. In M. Koutras & I. Triantafyllou (Eds.), Distribution-free methods for statistical process monitoring and control (pp. 1–56). Springer.

https://doi.org/10.1007/978-3-030-25081-2_1

Leonov, O. A., Shkaruba, N. Z., Vergazova, Y. G., Golinitskiy, P. V., & Antonova, U. Y. (2020). Quality control in the machining of cylinder liners at repair enterprises. Russian Engineering Research, 40, 726–731. https://doi.org/10.3103/S1068798X20090105

Mandal, S., Roychowdhury, T., & Bhattacharya, A. (2021). Pattern of genomic variation in SARSCoV-2 (COVID-19) suggests restricted nonrandom changes: Analysis using Shewhart control charts. Journal of Biosciences, 46(1), 1–7. https://doi.org/10.1007/s12038-020-00131-5

Nguyen, H. D., Nguyen, Q. T., Tran, K. P., & Ho, D. P. (2019). On the performance of VSI Shewhart control chart for monitoring the coefficient of variation in the presence of measurement errors. The International Journal of Advanced Manufacturing Technology, 104, 211–243. https://doi.org/10.1007/s00170-019-03352-7

Nguyen, H. D., Nadi, A. A., Tran, K. P., Castagliola, P., Celano, G., & Tran, K. D. (2021). The effect of autocorrelation on the Shewhart-RZ control chart. Retrieved from http://arxiv.org/abs/2108.05239

Oprime, P. C., Lizarelli, F. L., Pimenta, M. L., & Achcar, J. A. (2019). Acceptance X-bar chart considering the sample distribution of capability indices, and : A practical and economical approach. International Journal of Quality & Reliability Management, 36(6), 875–894. https://doi.org/10.1108/IJQRM-11-2017-0239

Sahu, B. K. (2021). Time series modelling in earth sciences. CRC Press. https://doi.org/10.1201/9781003211280

Semenoglou, A. A., Spiliotis, E., Makridakis, S., & Assimakopoulos, V. (2021). Investigating the accuracy of cross-learning time series forecasting methods. International Journal of Forecasting, 37(3), 1072–1084. https://doi.org/10.1016/j.ijforecast.2020.11.009

Srinivasa Rao, G., Raza, M. A., Aslam, M., AL-Marshadi, A. H., & Jun, C. H. (2019). A variable control chart based on process capability index under generalized multiple dependent state sampling. IEEE Access, 7, 34031–34044. https://doi.org/10.1109/ACCESS.2019.2903892

Wang, Y., Yu, C., Hou, J., Chu, S., Zhang, Y., & Zhu, Y. (2022). ARIMA model and few-shot learning for vehicle speed time series analysis and prediction. Computational Intelligence and Neuroscience, 2022, 1–9. https://doi.org/10.1155/2022/2526821

World Health Organization (WHO). (n.d.). WHO Coronavirus (COVID-19) dashboard. Retrieved from https://covid19.who.int/

Zhou, W., Cheng, C., & Zheng, Z. (2019). Optimal design of an attribute control chart for monitoring the mean of autocorrelated processes. Computers & Industrial Engineering, 137, 1–15. https://doi.org/10.1016/j. cie.2019.106081

Downloads

Published

2023-05-08

Issue

Section

Articles
Abstract 371  .
PDF downloaded 431  .