Data-Driven Approach for Credit Risk Analysis Using C4.5 Algorithm

Authors

  • Muhammad Iqbal Universitas Pembangunan Panca Budi
  • Syahril Efendi Universitas Sumatera Utara

DOI:

https://doi.org/10.21512/comtech.v14i1.8243

Keywords:

data-driven approach, credit risk analysis, C4.5 algorithm

Abstract

Credit risk is bad credit, resulting in bank losses due to non-receipt of disbursed funds and unacceptable interest income. However, credit services still have to be done to achieve profit. The absence of an approach that can assist in making policies to reduce credit risk makes the risk opportunities even more significant. So, data processing techniques are needed that produce information to be used as the basis for policies in triggering credit risk with data mining. The research presented an application of data mining as a credit risk approach considering the ability of data mining techniques to extract data into useful information with the C4.5 algorithm. The research used a sample of 30 data banks with 6 factors (credit growth, net interest margin, type of bank, capital ratio, company size, and bank compliance level). Credit risk was evaluated by making a decision tree and a RapidMiner test application. The results show that credit growth is the main factor causing credit risk, followed by bank compliance level, net interest margin, and capital ratio. Based on the results obtained, the C4.5 algorithm can be used in analyzing credit risk with results that are easy to understand and can be used as useful information for banks.

Dimensions

Plum Analytics

Author Biographies

Muhammad Iqbal, Universitas Pembangunan Panca Budi

Program Studi Sistem Komputer, Fakultas Sains dan Teknologi

Syahril Efendi, Universitas Sumatera Utara

Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi

References

Afrianto, E., Suseno, J. E., & Warsito, B. (2020). Decision tree method with C4.5 algorithm for students classification who is entitled to receive Indonesian Smart Card (KIP). In IOP Conference Series: Materials Science and Engineering (pp. 1–12). https://doi.org/10.1088/1757-899X/879/1/012072

Aji, I. K., & Manda, G. S. (2021). Pengaruh risiko kredit dan risiko likuiditas terhadap profitabilitas pada Bank BUMN. JAD: Jurnal Riset Akuntansi & Keuangan Dewantara, 4(1), 36–45.

An, Y., & Zhou, H. (2022). Short term effect evaluation model of rural energy construction revitalization based on ID3 decision tree algorithm. Energy Reports, 8(July), 1004–1012. https://doi.org/10.1016/j.egyr.2022.01.239

Ariawan, P. A. (2019). Optimasi pengelompokan data pada metode k-means dengan analisis outlier. Jurnal Nasional Teknologi & Sistem Informasi, 5(2), 88–95. https://doi.org/10.25077/teknosi.v5i2.2019.88-95

Bedregal-Alpaca, N., Cornejo-Aparicio, V., Zarate-Valderrama, J., & Yanque-Churo, P. (2020). Classification models for determining types of academic risk and predicting dropout in university students. International Journal of Advanced Computer Science and Applications, 11(1), 266–272. https://doi.org/10.14569/ijacsa.2020.0110133

Cristina, K. M., & Artini, L. G. S. (2018). Pengaruh likuiditas, risiko kredit, dan dana pihak ketiga terhadap profitabilitas pada Bank Perkreditan Rakyat (BPR). E-Jurnal Manajemen, 7(6), 3353–3383.

Fauzi, A., Marpaung, I. J. S., & Pardede, A. M. H. (2018). Sistem pendukung pemilihan pekerjaan menggunakan metode apriori berdasarkan korelasi jurusan dengan IPK untuk mengetahui pekerjaan yang tepat. METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, 2(2), 152–159.

Ghasarma, R., Muthia, F., Umrie, M. R., Sulastri, S., & Arianto, B. (2019). The influence of financial inclusion on credit risks in commercial banks in Indonesia. Jurnal Akuntansi dan Bisnis, 19(2), 160–166.

Ginting, V. S., Kusrini, K., & Taufiq, E. (2020). Implementasi algoritma C4.5 untuk memprediksi keterlambatan pembayaran sumbangan pembangunan pendidikan sekolah menggunakan Python. Inspiration: Jurnal Teknologi Informasi dan Komunikasi, 10(1), 36–44. https://doi.org/10.35585/inspir.v10i1.2535

Harlina, S. (2018). Data mining pada penentuan kelayakan kredit menggunakan algoritma k-nn berbasis forward selection (Data mining on credit feasibility determination using K-NN algorithm based on forward selection). CCIT Journal, 11(2), 236–244. https://doi.org/10.33050/ccit.v11i2.591

Hakim, L., & Oktaria, E. T. (2018). Prinsip kehati-hatian pada lembaga perbankan dalam pemberian kredit. Keadilan Progresif, 9(2), 164–176.

Hanif, R. A. (2015). Pengaruh pertumbuhan kredit, net interest margin, rasio modal dan ukuran perusahaan terhadap risiko kredit pada seluruh bank yang terdaftar di BEI periode 2010-2013. PEKBIS, 7(3), 163–173.

Hozeng, S., & Aisa, S. (2016). Aplikasi data mining dengan menggunakan metode decision tree untuk prediksi penentuan resiko kredit. Prosiding Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, V(2), 33–41.

Kurniawan, D., Anggrawan, A., & Hairani. (2020). Graduation prediction system on students using C4.5 algorithm. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 19(2), 358–366. https://doi.org/10.30812/matrik.v19i2.685

Le, Y. (2022). Research on data resource management of biomass energy engineering based on data mining. Energy Reports, 8(July), 1482–1492. https://doi.org/10.1016/j.egyr.2022.02.048

Lihani, R., Ngadiman, & Hamidi, N. (2013). Analisis manajemen kredit guna meminimalkan risiko kredit (Studi pada PD BPR BKK Tasikmadu Karanganyar). JuPE-Jurnal Pendidikan Ekonomi, 1(3), 1–11.

Liu, Z., Jin, D., & Liu, Q. (2011). Prediction of water inrush through coal floors based on data mining classification technique. Procedia Earth and Planetary Science, 3, 166–174. https://doi.org/10.1016/j.proeps.2011.09.079

Pradeep, K. R., & Naveen, N. C. (2018). Lung cancer survivability prediction based on performance using classification techniques of Support Vector Machines, C4.5 and Naive Bayes algorithms for healthcare analytics. Procedia Computer Science, 132, 412–420. https://doi.org/10.1016/j.procs.2018.05.162

Ramos, D., Faria, P., Morais, A., & Vale, Z. (2022). Using decision tree to select forecasting algorithms in distinct electricity consumption context of an office building. Energy Reports, 8(June), 417–422. https://doi.org/10.1016/j.egyr.2022.01.046

Riandari, F., & Sihotang, H. T. (2020). Implementation of C4.5 algorithm to analyze library satisfaction visitors. Jurnal Mantik, 4(2), 1076–1084.

Riandari, F., & Simangunsong, A. (2019). Penerapan algoritma C4.5 untuk mengukur tingkat kepuasan mahasiswa. CV. Rudang Mayang.

Saputro, A. R., Sarumpaet, S., & Prasetyo, T. J. (2019). Analisa pengaruh pertumbuhan kredit, jenis kredit, tingkat bunga pinjaman bank dan inflasi terhadap kredit bermasalah. Ekspansi: Jurnal Ekonomi, Keuangan, Perbankan, dan Akuntansi, 11(1), 1–12.

Subarkah, P., Pambudi, E. P., & Hidayah, S. O. N. (2020). Perbandingan metode klasifikasi data mining untuk nasabah bank telemarketing. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 20(1), 139–148. https://doi.org/10.30812/matrik.v20i1.826

Susanto, W., & Indriyani, L. (2019). Analisis penerapan Naïve Bayes untuk memprediksi resiko kredit anggota koperasi keluarga guru. Jurnal Informatika, 6(2), 262–270. https://doi.org/10.31311/ji.v6i2.5724

Syamlan, Y. T., & Jannah, W. (2019). The determinant of credit risk in Indonesian islamic commercial banks. Share: Jurnal Ekonomi dan Keuangan Islam, 8(2), 181–206. https://doi.org/10.22373/share.v8i2.5051

Wang, H. B., & Gao, Y. J. (2021). Research on C4.5 algorithm improvement strategy based on MapReduce. Procedia Computer Science, 183, 160–165. https://doi.org/10.1016/j.procs.2021.02.045

Wang, X., Zhou, C., & Xu, X. (2019). Application of C4.5 decision tree for scholarship evaluations. Procedia Computer Science, 151, 179–184. https://doi.org/10.1016/j.procs.2019.04.027

Wijaya, E., & Tiyas, A. W. (2019). Analisis pengaruh kecukupan modal, likuditas, risiko kredit dan efisiensi biaya terhadap profitabilitas bank umum. Jurnal Ekonomi, Manajemen dan Perbankan (Journal of Economics, Management and Banking), 2(3), 99–109.

Zulfami, F. (2017). Analisa dan perancangan aplikasi data mining penentuan resiko kredit kepemilikan kendaraan bermotor menggunakan algoritma K-Nearest Neighbor. Jurnal Inkofar, 1(1), 32–39. https://doi.org/10.46846/jurnalinkofar.v1i1.1

Downloads

Published

2023-05-08

Issue

Section

Articles
Abstract 438  .
PDF downloaded 488  .