Prediction Model for Tourism Object Ticket Determination in Bangkalan, Madura, Indonesia
DOI:
https://doi.org/10.21512/comtech.v14i2.7992Keywords:
prediction model, tourism object ticket, ticket determinationAbstract
One of the regencies in Madura, namely Bangkalan, with its local wisdom and beautiful landscapes has the potential to become a tourism center. However, there may be a decrease in the number of visits caused by some factors. The research used the time series method to build a prediction model for tourist attraction entrance tickets. The model development aimed to estimate the number of tourist attraction visits in the future. The right model was needed to get the best prediction results. Least square, Holt-Winter, Seasonal Autoregressive Integrated Moving Average (SARIMA), and Rolling were chosen as the models. Data collection related to the number of tourist objects was carried out directly at the Tourism Office to obtain valid data. Using data on visitors to tourist attractions in Bangkalan Regency from 2015 to 2019, the results of measuring errors using Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) are obtained. The error measurement results show that the Holt-Winter model has the lowest error rate of 5% and RMSE of 307,1198. Based on these calculations, the Holt-Winter model is the best model for determining tourist attraction entrance tickets. The ranking of the error measurement results from the highest to the lowest are Holt-Winter, Rolling, SARIMA, and Least Square methods.
Plum Analytics
References
Almazrouee, A. I., Almeshal, A. M., Almutairi, A. S., Alenezi, M. R., & Alhajeri, S. N. (2020). Long-term forecasting of electrical loads in Kuwait using Prophet and Holt–Winters Models. Applied Sciences, 10(16), 1–17. https://doi.org/10.3390/app10165627
Assidiq, A., Hendikawati, P., & Dwidayati, N. (2017). Perbandingan metode Weighted Fuzzy Time Series, Seasonal ARIMA, dan Holt-Winter’s Exponential Smoothing untuk meramalkan data musiman. Unnes Journal of Mathematics, 6(2), 129–142.
Berlinditya, B., & Noeryanti. (2019). Pemodelan time series dalam peramalan jumlah pengunjung objek wisata di Kabupaten Gunungkidul menggunakan metode ARIMAX Efek Variasi Kalender. Jurnal Statistika Industri dan Komputasi, 4(01), 81–88.
Cui, K., & Jing, X. (2019). Research on prediction model of geotechnical parameters based on BP neural network. Neural Computing and Applications, 31, 8205–8215. https://doi.org/10.1007/s00521-018-3902-6
Dahiwade, D., Patle, G., & Meshram, E. (2019). Designing disease prediction model using machine learning approach. In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1211–1215). IEEE. https://doi.org/10.1109/ICCMC.2019.8819782
Damanik, E. L., Simanjuntak, D. H., & Daud, D. (2021). Cultural heritage buildings for urban tourism destinations: Portraits of Siantar, Indonesia, in the past. F1000Research 2021, 10, 554–562. https://doi.org/10.12688/f1000research.48027.1
Darmawan, A. K., Siahaan, D., Susanto, T. D., Hoiriyah, H., Umam, B., Hidayanto, A. N., ... & Santosa, I. (2020). Hien’s framework for examining information system quality of mobile-based smart regency service in Madura Island Districts. In 2020 4th International Conference on Informatics and Computational Sciences (ICICoS) (pp. 1–5). IEEE. https://doi.org/10.1109/ICICoS51170.2020.9299015
Dengen, N., Haviluddin, Andriyani, L., Wati, M., Budiman, E., & Alameka, F. (2018). Medicine stock forecasting using Least Square method. In 2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT) (pp. 100–103). IEEE. https://doi.org/10.1109/EIConCIT.2018.8878563
Dharma, F., Shabrina, S., Noviana, A., Tahir, M., Hendrastuty, N., & Wahyono, W. (2020). Prediction of Indonesian inflation rate using regression model based on Genetic algorithms. Jurnal Online Informatika, 5(1), 45–52.
Google Maps. (n.d.). Pulau Madura. Retrieved from https://www.google.co.id/maps/place/Madura+Island/@-7.0569576,112.8385688,199132m/data=!3m2!1e3!4b1!4m5!3m4!1s0x2dd9d3445c8704d1:0x5a2751be1dfcce84!8m2!3d-7.0777326!4d113.287085
Haq, M. R., & Ni, Z. (2019). A new hybrid model for short-term electricity load forecasting. IEEE Access, 7, 125413–125423. https://doi.org/10.1109/ACCESS.2019.2937222
Henttu-Aho, T. (2018). The role of Rolling forecasting in budgetary control systems: Reactive and proactive types of planning. Journal of Management Control, 29(3-4), 327–360.
Higgins-Desbiolles, F. (2018). Sustainable tourism: Sustaining tourism or something more? Tourism Management Perspectives, 25(January), 157–160. https://doi.org/10.1016/j.tmp.2017.11.017
Higgins-Desbiolles, F., Carnicelli, S., Krolikowski, C., Wijesinghe, G., & Boluk, K. (2019). Degrowing tourism: Rethinking tourism. Journal of Sustainable Tourism, 27(12), 1926–1944. https://doi.org/10.1080/09669582.2019.1601732
Jain, G., & Mallick, B. (2017). A study of time series models ARIMA and ETS. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2898968
Liengaard, B. D., Sharma, P. N., Hult, G. T. M., Jensen, M. B., Sarstedt, M., Hair, J. F., & Ringle, C. M. (2021). Prediction: Coveted, yet forsaken? Introducing a cross-validated predictive ability test in Partial Least Squares path modeling. Decision Sciences, 52(2), 362–392. https://doi.org/10.1111/deci.12445
Liu, L., & Wu, L. (2022). Holt–Winters model with grey generating operator and its application. Communications in Statistics - Theory and Methods, 51, 3542–3555. https://doi.org/10.1080/03610926.2020.1797804
Madsen, H. (2007). Time series analysis. CRC Press.
Mahmud, T., Billah, M., Hasan, M., & Roy-Chowdhury, A. K. (2021). Prediction and description of near-future activities in video. Computer Vision and Image Understanding, 210(September), 1–12. https://doi.org/10.1016/j.cviu.2021.103230
Mufarroha, F. A., Tholaby, A. T., Anamisa, D. R., & Jauhari, A. (2023). The design of the Least Square method on sales of admission tickets to Madura tourism in forecasting cases. In AIP Conference Proceedings (Vol. 2679, No. 1). AIP Publishing.
Pertiwi, D. D. (2020). Applied exponential smoothing Holt-Winter method for predict rainfall in Mataram City. Journal of Intelligent Computing and Health Informatics, 1(2), 46–49. https://doi.org/10.26714/jichi.v1i2.6330
Robial, S. M. (2018). Perbandingan model statistik pada analisis metode peramalan time series: (Studi kasus: PT. Telekomunikasi Indonesia, Tbk Kandatel Sukabumi). Jurnal Ilmiah SANTIKA, 8(2), 1–17.
Scheyvens, R., & Biddulph, R. (2018). Inclusive tourism development. Tourism Geographies, 20(4), 589–609. https://doi.org/10.1080/14616688.2017.1381985
Shano, L., Raghuvanshi, T. K., & Meten, M. (2020). Landslide susceptibility evaluation and hazard zonation techniques–A review. Geoenvironmental Disasters, 7(1), 1–19.
Sianturi, C. J. M., Ardini, E., & Sembiring, N. S. B. (2020). Sales forecasting information system using the Least Square method in Windi Mebel. Jurnal Inovasi Penelitian, 1(2), 75–82. https://doi.org/10.47492/jip.v1i2.52
Tadesse, K. B., & Dinka, M. O. (2017). Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa. Journal of Water and Land Development, 35(X–XII), 229–236. https://doi.org/10.1515/jwld-2017-0088
Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8), 1352–1362. https://doi.org/10.1057/jors.2014.103
Ton-Nu, V. (2014). Rolling forecasts in a Beyond Budgeting environment: A case study on the use of Rolling forecasts as a management tool. Retrieved from http://hdl.handle.net/11250/226581
Umam, B., Darmawan, A. K., Anwari, A., Santosa, I., Walid, M., & Hidayanto, A. N. (2020). Mobile-based smart regency adoption with TOE framework: An empirical inquiry from Madura Island Districts. In 2020 4th International Conference on Informatics and Computational Sciences (ICICoS) (pp. 1–6). https://doi.org/10.1109/ICICoS51170.2020.9299025
Yang, C. H., Wu, C. H., & Hsieh, C. M. (2020). Long short-term memory recurrent neural network for tidal level Forecasting. IEEE Access, 8, 159389–159401. https://doi.org/10.1109/ACCESS.2020.3017089
Yang, F., Li, M., Huang, A., & Li, J. (2014). Forecasting time series with genetic programming based on Least Square method. Journal of Systems Science and Complexity, 27, 117–129. https://doi.org/10.1007/s11424-014-3295-2
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Fifin Ayu Mufarroha, Akhmad Tajuddin Tholaby, Devie Rosa Anamisa, Achmad Jauhari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
USER RIGHTS
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows: