The Alternative of Sensor Placement in Multi-Story Buildings through the Metric Dimension Approach: A Representation of Generalized Petersen Graphs
DOI:
https://doi.org/10.21512/comtech.v13i2.7268Keywords:
metric dimension, sensor placement, multistory building, Petersen graph, Python programmingAbstract
In a public facility or private office where many people can get together, a fire detection device is a mandatory tool as an emergency alarm in the facility. However, the expense of the installation of the device is a troublesome matter. So, optimization is needed to minimize the number of these devices. The way to implement is to select the appropriate position to place the devices in public facilities. The research discussed the placement of the sensors in multi-story buildings. The multi-story buildings could be represented as cube composition graphs with the number of rooms, and the connectivity between the floor and its rooms was equal. The concept of this multi-story building was modeled into a generalized Petersen graph where a vertex represented a room, and an edge was the connectivity of rooms. The basis obtained on that metric dimension was represented as a sensor placed on the building. Then, the optimization of device placement was seen as determining the metric dimensions of the Petersen graph. In the research, the alternative sensor placements were computed using the graph metric dimension approach implemented in Python. The research successfully implements the metric dimension of to using Python code to obtain the alternative of its basis. A basic alternative indicates the location of the device placement like fire detectors, network access points, or other sensors inside a building.
Plum Analytics
References
Adawiyah, R., Agustin, I. H., Prihandini, R. M., Alfarisi, R., & Albirri, E. R. (2019). On the local multiset dimension of m-shadow graph. Journal of Physics: Conference Series, 1211, 1–9. https://doi.org/10.1088/1742-6596/1211/1/012006
Adawiyah, R., Prihandini, R. M., Albirri, E. R., Agustin, I. H., & Alfarisi, R. (2019). The local multiset dimension of unicyclic graph. In IOP Conference Series: Earth and Environmental Science (pp. 1–8). IOP Publishing. https://doi.org/10.1088/1755-1315/243/1/012075
Alfarisi, R., Dafik, D., Kristiana, A. I., & Agustin, I. H. (2019). The local multiset dimension of graphs. IJET, 8(3), 120–124.
Asmiati, A., Aldino, A. A., Notiragayu, N., Zakaria, L., & Anshori, M. (2020). Dimensi metrik hasil operasi tertentu pada graf Petersen diperumum. Limits: Journal of Mathematics and Its Applications, 16(2), 87–93. https://doi.org/10.12962/limits.v16i2.5594
Bača, M., Baskoro, E. T., Salman, A. N. M., Saputro, S. W., & Suprijanto, D. (2011). The metric dimension of regular bipartite graphs. Bulletin Mathématique de La Société Des Sciences Mathématiques de Roumanie, 54(102), 15–28. https://www.jstor.org/stable/43679200
Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1–3), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0
Dudenko, M., & Oliynyk, B. (2017). On unicyclic graphs of metric dimension 2. Algebra and Discrete Mathematics, 23(2), 216–222.
Hernando, C., Mora, M., Pelayo, I. M., Seara, C., & Wood, D. R. (2010). Extremal graph theory for metric dimension and diameter. The Electronic Journal of Combinatorics, 17(1), 1–28. https://doi.org/10.37236/302
Imran, M., Siddiqui, M. K., & Naeem, R. (2018). On the metric dimension of generalized Petersen multigraphs. IEEE Access, 6, 74328–74338. https://doi.org/10.1109/ACCESS.2018.2883556
Okamoto, F., Phinezy, B., & Zhang, P. (2010). The local metric dimension of a graph. Mathematica Bohemica, 135(3), 239–255. https://doi.org/10.21136/MB.2010.140702
Saenpholphat, V., & Zhang, P. (2004). Conditional resolvability in graphs: A survey. International Journal of Mathematics and Mathematical Sciences, 2004, 1997–2017. https://doi.org/10.1155/S0161171204311403
Saputro, S. W., Mardiana, N., & Purwasih, I. A. (2017). The metric dimension of comb product graphs. Matematicki Vesnik, 69(4), 248–258.
Saputro, S. W., Simanjuntak, R., Uttunggadewa, S., Assiyatun, H., Baskoro, E. T., Salman, A. N. M., & Bača, M. (2013). The metric dimension of the lexicographic product of graphs. Discrete Mathematics, 313(9), 1045–1051. https://doi.org/10.1016/j.disc.2013.01.021
Simanjuntak, R., Uttunggadewa, S., & Saputro, S. W. (2013). Metric dimension of amalgamation of graphs. Retrieved from https://arxiv.org/abs/1312.0191
Susilowati, L., Sa’adah, I., Fauziyyah, R. Z., Erfanian, A., & Slamin. (2020). The dominant metric dimension of graphs. Heliyon, 6(3), 1–6. https://doi.org/10.1016/j.heliyon.2020.e03633
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Asmiati, Akmal Junaidi, Ahmad Ari Aldino, Arif Munandar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
USER RIGHTS
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows: