The Development of Data Warehouse from Payment Point Services of IT Business Solution Provider


  • Kornelius Irfandhi Bina Nusantara University



data warehouse, trend of transaction, agent registration, payment point


The goals of the research is to develop a data warehouse loaded from operational database of payment point service in IT business solution provider. The development scope is data analysis using Online Analytical Processing (OLAP) tools for identifying the trends of transaction and agent registration, and create reports and dashboards. The data warehouse was developed with Kimball method as known as the nine-step design methodology. The data and requirement were collected by observation and interview with Chief Technology Officer (CTO). The data warehouse was analyzed by OLAP tool provided by Pentaho Business Analytics software with additional plugin Pivot4J. The obtained results are the trends of transaction
and agent registration between 2014 and 2015. It can be concluded that developed data warehouse can be used as ananalysis tool to know the trends information.


Plum Analytics

Author Biography

Kornelius Irfandhi, Bina Nusantara University

Computer Science Department, School of Computer Science


Abai, N. H. Z., Yahaya, J. H., & Deraman, A. (2013). User requirement analysis in data warehouse design: A Review. Procedia Technology 11, 801-806.

Darudiato, S. (2010). Perancangan data warehouse penjualan untuk mendukung kebutuhan informasi eksekutif Cemerlang Skin Care. In Seminar Nasional Informatika 2010 (pp. 350-359). Yogyakarta.

El-Sappagh, S. H. A., Hendawi, A. M. A., & El Bastawissy, A. H. (2011). A Proposed model for data warehouse ETL processes. Journal of King Saud University - Computer and Information Sciences, 23(2), 91-104.

Fadilah, U., Winarno, W. W., & Amborowati, A. (2016). Perancangan Data Warehouse Untuk Sistem Akademik STMIK Kadiri. Jurnal Sisfotenika, 6(2), 217-228.

Gahlot, A., & Yadav, M. (2014). An overview of data warehousing, data mining, OLAP and OLTP technologies. International Journal of Innovative Research in Technology, 1(6), 448-455.

Kimball, R., & Ross, M. (2015). The kimball group reader: Relentlessly practical tools for data warehousing and business intelligence. Indianapolis: Wiley Publishing, Inc.

Mohammed, K. I. (2014). Data warehouse design and implementation based on quality requirements. International Journal of Advances in Engineering & Technology, 7(3), 642-651.

Mulyati, S., Amini, S., & Juliasari, N. (2014). Perancangan data warehouse untuk pengukuran kinerja pengajaran dosen. Jurnal Telematika MKOM, 6(1), 1-5.

Oktavia, T. (2011). Perancangan model data warehouse dalam mendukung perusahaan jasa pengiriman. In Seminar Nasional Informatika 2011 (pp. 93-100). Yogyakarta.

Pardillo, J., Mazón, J. N., & Trujillo, J. (2010). Extending OCL for OLAP querying on conceptual multidimensional models of data warehouses. Information Sciences, 180(5), 584-601. https://doi.


Paskarina, S., & Ayub, M. (2010). Aplikasi analisis data kesehatan dengan memanfaatkan teknologi OLAP untuk Departemen Kesehatan PT Ateja Multi Industri. Jurnal Informatika, 6(2), 119-130.

Prihatin, N. (2013). Perancangan data warehouse calon mahasiswa baru Politeknik Negeri Lhokseumawe. Jurnal Litek, 10(1), 62-66.

Putra, E. P., Fifilia, Christian, L., & Sudarma, H. (2015). Modelling of data warehouse on food distribution center and reserves in the Ministry Of Agriculture. ComTech, 6(3), 422-434.

Shen, L., Liu, S., Chen, S., & Wang, X. (2012). The application research of OLAP in police intelligence decision system. In Procedia Engineering 29 (pp. 397-402).

Widianty. (2015). Data warehouse design with Kimball Method: Case study of Farhrenheit Manufacturing Systems. ComTech, 6(4), 604-612.






Abstract 509  .
PDF downloaded 276  .