# Hubungan Deret Bertingkat Berdasarkan Bilangan Eulerian dengan Operator Beda

## Authors

• Alexander Agung Santoso Gunawan Bina Nusantara University

## Keywords:

rank series, fixed rank series, differential operator

## Abstract

Rank series defined as: is a generalization of the fixed rank series (the sum of powers), in which its closed solution has been found empirically by Jacob Bernoulli in 1731. This paper will explore the relationship between rank series and differential operator. To see this relationship, examples for the case m = 1.2 and α = 1.2. are provided.

Dimensions

Plum Analytics

## References

Goenawan, Stephanus Ivan. (2003). Deret Bertingkat Berderajat Satu Dalam Teori Keteraturan. Metris: Jurnal Mesin, Elektro, Industri dan Sains, 4 (01).

Gunawan, Alexander. (2009). Solusi Deret Pangkat Tetap dengan Fungsi Pembangkit, (jurnal tidak diterbitkan).

Gunawan, Alexander. (2010). Solusi Deret Bertingkat Dengan Fungsi Pembangkit Dan Bilangan Eulerian. Dipresentasikan pada Seminar Nasional Matematika 2010 UI – UNPAD, Jakarta.

Kunin, George. (n.d.) The Finite Difference Calculus and Application to the Interpolation odd Sequences. MIT Undergraduate Journal of Mathematics.

South, Katherine Ann. (1993). Solving Recurrence with Generating Functions: A Tutorial. Diakses dari http://www.google.co.id/url?sa=t&source=web&cd=1&ved=0CBQQFjAA&url=http%3A%2F%2Fwww.cs.umbc.edu%2Fpub%2FREPORTS%2Fcs-93-05.ps.Z&rct=j&q=South%2C%20Katherine%20Ann.%20(1993).%20Solving%20Recurrence%20with%20Generating%20Function.%20University%20of%20Maryland%20Baltimore%20County%2C%20Baltimore.&ei=WvsoTo6YGsvprQeLn_XHBg&usg=AFQjCNFATMRswLVcnS813scHlvao4T5QTA&sig2=tO0bwfTeEh17Zjkd-pcDHA&cad=rja. Baltimore: University of Maryland Baltimore County.

Wilf, Herbert. (1994). Generatingfunctionology. New York: Academic Press.