Pengendalian Kualitas untuk Meminimalkan Jumlah Cacat pada Produk Kaleng Aeorosol
DOI:
https://doi.org/10.21512/comtech.v3i1.2457Keywords:
statistical quality control (SQC), failure mode and effect analysis (FMEA), aeorosol canAbstract
2.64% is the largest defect percentage of aerosol can product of PT Multi Makmur Indah Industri. To improve the product quality, the study focused on the goal of reducing the percentage of defects using the Statistical Quality Control. After gaining control of the company, we can calculate the process capability in the aerosol can manufacture. The next step is identification of the defects causes that arise using the failure mode and effect analysis (FMEA) method to measure the defect causes risks and as an input in determining control recommendations. From the observations and data processing, it is recognized that the overall phase of the process has a process capability value above 99%. 80% of defects in the aerosol cans product occur during the process of can making, component making and printing. While the most risking defect cause is the destruction of
machine B coating on the printing process (RPN = 245) and the quality of the welding wire on can manufacturing process (RPN = 160). Therefore, the solution to reduce the defect percentage is replacing the damaged coating machine B as well as upgrading the quality of the welding wire. Thus, it can reduce the loss
sale as much as 1.06% (Rp110,716,000) per month.
Plum Analytics
References
Besterfield, Dale H. (2009). Quality Control with Student CD 8th International Edition. New Jersey: Pearson Education.
Montgomery, Douglas C. (2009). Statistical Quality Control (6th edition). New York: John Wiley & Sons.
Stamatis, D. H. (2003). Six Sigma and Beyond: design for six sigma. Florida: CRC Press LLC.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
USER RIGHTS
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows: