Implementasi Jaringan Syaraf Tiruan Recurrent Dengan Metode Pembelajaran Gradient Descent Adaptive Learning Rate Untuk Pendugaan Curah Hujan Berdasarkan Peubah Enso
DOI:
https://doi.org/10.21512/comtech.v1i2.2384Keywords:
Artificial Neural Network (ANN) Recurrent Elman, ENSO, coefficient of determination (R2), Root Mean Square Error (RMSE), Gradient Descent Adaptive Learning Rate.Abstract
The use of technology of technology Artificial Neural Network (ANN) in prediction of rainfall can be done using the learning approach. ANN prediction accuracy measured by the coefficient of determination (R2) and Root Mean Square Error (RMSE).This research employ a recurrent optimized heuristic Artificial Neural Network (ANN) Recurrent Elman gradient descent adaptive learning rate approach using El-Nino Southern Oscilation (ENSO) variable, namely Wind, Southern Oscillation Index (SOI), Sea Surface Temperatur (SST) dan Outgoing Long Wave Radiation (OLR) to forecast regional monthly rainfall. The patterns of input data affect the performance of Recurrent Elman neural network in estimation process. The first data group that is 75% training data and 25% testing data produce the maximum R2 69.2% at leap 0 while the second data group that is 50% training data & 50% testing data produce the maximum R2 53.6%.at leap 0 Our result on leap 0 is better than leap 1,2 or 3.
Plum Analytics
References
Apriyanti, N. (2005). Optimasi Jaringan Syaraf Tiruan dengan Algoritma Genetika untuk Peramalan Curah Hujan. Bogor: Jurusan Ilmu Komputer FMIPA IPB.
Effendy, S. (2001). Urgensi Prediksi Cuaca dan Iklim di Bursa Komoditas Unggulan Pertanian. Bogor: Makalah Falsafah Sains Program Pasca Sarjana/S3.
Fitriadi. (2004). Kombinasi Model Regresi Komponen Utama dan Arima dalam Statistical Downscaling. Skripsi. Bogor: Jurusan Ilmu Komputer FMIPA IPB.
Kusumadewi, S. (2004). Membangun Jaringan Syaraf Tiruan menggunakan MATLAB & Excel Link. Penerbit Graha Ilmu.
Lakshmi, S. S., Tiwari, R. K., & Somvanshi, V. K. (2003). Prediction of Indian Rainfall Index (IRF) Using the ENSO Variability and Sunspot Cycles-an Artificial Neural Network Approach. J.Ind.Geophys. Union Vol.7, No.4.pp.173-181.
Normakristagaluh, P. (2004). Penerapan Jaringan Syaraf Tiruan untuk Peramalan Curah Hujan dalam Statistical Downscaling. Bogor: Jurusan Ilmu Komputer FMIPA IPB.
Workshop JNB. (2002). Aplikasi Jaringan Neural Buatan pada Pattern Recognition. Laboratorium Kecerdasan Komputasi Fakultas Ilmu Komputer Universitas Indonesia.
Yusmen, D. (1998). Pengaruh ENSO terhadap pola curah, hujan di Wilayah DAS Brantas Selatan-Jawa Timur. Tugas Akhir. Bandung: Jurusan Geofisika dan Meteorologi,FMIPA ITB.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
USER RIGHTS
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows: