A Novel Machine Learning for Ethanol and Methanol Classification with Capacitive Soil Moisture (CSM) Sensors

Authors

DOI:

https://doi.org/10.21512/comtech.v15i2.12051

Keywords:

machine learning, ethanol classification, methanol classification, Capacitive Soil Moisture (CSM)

Abstract

Although Gas Chromatography (GC) is highly accurate, it is costly, highlighting the need for a more affordable method for alcohol detection. Ethanol and methanol have different evaporation rates and dielectric constants, suggesting the potential for classification as an alternative initial step to GC based on differences in dielectric due to evaporation using Capacitive Soil Moisture (CSM) sensors, although it has not been previously attempted. The research aimed to present a novel machine learning for ethanol and methanol classification with CSM sensors. The method involved placing evaporated samples on CSM plates and measuring the change in evaporative dielectric properties over time. The data were then processed using Python, preprocessing data, splitting data, and training various classifiers with key differentiators based on standard deviation, mean, difference, and cumulative summary. Then, model accuracy was evaluated. The research results show that the approach can distinguish between pure ethanol and methanol based on the dielectric differences in each substance's evaporation rate using machine learning training methods with classifiers such as Random Forest, Extra Trees, Gaussian Naive Bayes, AdaBoost, and Logistic Regression with seven folds in cross-validation, L2 regularization, and Newton-Cholesky solver, with accuracies of 96.67%, 96.67%, 96.67%, 93.33%, and 93.33%, respectively. Although the research is limited to the classification of two types of alcohol, the novel approach can classify methanol and ethanol, leading to a potential initial step in determining alcohol content in the future. It can be an alternative to GC with a simpler and more affordable setup using CSM sensors.

Dimensions

Plum Analytics

Author Biographies

Devina Intan Sari, Universitas Kristen Satya Wacana

Magister Sains Data, Fakultas Sains & Matematika

Suryasatriya Trihandaru, Universitas Kristen Satya Wacana

Magister Sains Data, Fakultas Sains & Matematika

Hanna Arini Parhusip, Universitas Kristen Satya Wacana

Magister Sains Data, Fakultas Sains & Matematika

References

Alfian, G., Syafrudin, M., Fahrurrozi, I., Fitriyani, N. L., Atmaji, F. T. D., Widodo, T., ... & Rhee, J. (2022). Predicting breast cancer from risk factors using SVM and extra-trees-based feature selection method. Computers, 11(9), 1–14. https://doi.org/10.3390/computers11090136

Baihaqi, M. Y., Lumoindong, C. W. D., & Vincent. (2021). Simulasi perbandingan filter Savitzky Golay dan filter Low Pass Butterworth pada orde ketiga sebagai pembatal kebisingan. KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, 1(2), 226–232. https://doi.org/10.24002/konstelasi.v1i2.4294

Chollet, F. (2021). Deep learning with Python, second edition. Manning Publications.

França, R. P., Monteiro, A. C. B., Arthur, R., & Iano, Y. (2021). An overview of deep learning in big data, image, and signal processing in the modern digital age. Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems, 63–87. https://doi.org/10.1016/B978-0-12-822226-3.00003-9

Gupta, A., Parmar, R., Suri, P., & Kumar, R. (2021). Determining accuracy rate of artificial intelligence models using Python and R-Studio. In 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) (pp. 889–894). https://doi.org/10.1109/ICAC3N53548.2021.9725687

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2

Hrisko, J. (2020, July 5). Capacitive soil moisture sensor theory, calibration, and testing. https://makersportal.com/s/capacitive_soil_moisture_sensors_joshua_hrisko.pdf

Iliev, S. (2021). A comparison of ethanol, methanol, and butanol blending with gasoline and its effect on engine performance and emissions using engine simulation. Processes, 9(8), 1–14. https://doi.org/10.3390/pr9081322

Joseph, J. A., Akkermans, S., & Van Impe, J. F. (2022). Processing method for the quantification of methanol and ethanol from bioreactor samples using gas chromatography–Flame ionization detection. ACS Omega, 7, 24121–24133. https://doi.org/10.1021/acsomega.2c00055

Korban, A., Charapitsa, S., Čabala, R., Sobolenko, L., Egorov, V., & Sytova, S. (2021). Advanced GC–MS method for quality and safety control of alcoholic products. Food Chemistry, 338. https://doi.org/10.1016/J.FOODCHEM.2020.128107

Li, M. (2023). Teaching business analytics students logistic regression using Python and R. Business Education Innovation Journal, 15(1), 35–41.

Li, Z., Wang, H., Zhang, Y., & Zhao, X. (2020). Random forest–based feature selection and detection method for drunk driving recognition. International Journal of Distributed Sensor Networks, 16(2).

Liu, Y., Esan, O. C., Pan, Z., & An, L. (2021). Machine learning for advanced energy materials. Energy and AI, 3, 1–27. https://doi.org/10.1016/J.EGYAI.2021.100049

Lone, B. G., Undre, P. B., Patil, S. S., Khirade, P. W., & Mehrotra, S. C. (2008). Dielectric study of methanol–ethanol mixtures using TDR method. Journal of Molecular Liquids, 141(1–2), 47–53. https://doi.org/10.1016/j.molliq.2008.03.001

Mohsen-Nia, M., Amiri, H., & Jazi, B. (2010). Dielectric constants of water, methanol, ethanol, butanol and acetone: Measurement and computational study. Journal of Solution Chemistry, 39, 701–708. https://doi.org/10.1007/s10953-010-9538-5

Nur, A. R., Jaya, A. K., & Siswanto. (2023). Comparative analysis of ridge, LASSO, and elastic net regularization approaches in handling multicollinearity for infant mortality data in South Sulawesi. Jurnal Matematika, Statistika dan Komputasi, 20(2), 311–319. https://doi.org/10.20956/j.v20i2.31632

Paolini, M., Tonidandel, L., & Larcher, R. (2022). Development, validation and application of a fast GC-FID method for the analysis of volatile compounds in spirit drinks and wine. Food Control, 136. https://doi.org/10.1016/J.FOODCONT.2022.108873

Parhusip, H. A., Susanto, B., Linawati, L., Trihandaru, S., Sardjono, Y., & Mugirahayu , A. S. (2020). Classification breast cancer revisited with machine learning. International Journal of Data Science, 1(1), 42–50. https://doi.org/10.18517/ijods.1.1.42-50.2020

Park, S. J., Lee, S. J., Kim, H., Kim, J. K., Chun, J. W., Lee, S. J., ... & Choi, I. Y. (2021). Machine learning prediction of dropping out of outpatients with alcohol use disorders. PLoS ONE, 16(8), 1–13. https://doi.org/10.1371/journal.pone.0255626

Putri, A., & Kasli, E. (2017). Pengaruh suhu terhadap viskositas minyak goreng. In Prosiding Seminar Nasional MIPA III (pp. 464–469).

Quirk, T. J., & Palmer-Schuyler, J. (2020). Sample size, mean, standard deviation, and standard error of the mean. In Excel 2019 for human resource management statistics: A guide to solving practical problems. Springer. https://doi.org/10.1007/978-3-030-58001-8_1

Rizzo, V., Salmasi, M. Y., Sabetai, M., Primus, C., Sandoe, J., Lewis, M., ... & Athanasiou, T. (2023). Infective endocarditis: Do we have an effective risk score model? A systematic review. Frontiers in Cardiovascular Medicine, 10, 1–12. https://doi.org/10.3389/fcvm.2023.1093363

Sathish Kumar, L., Pandimurugan, V., Usha, D., Guptha, M. N., & Hema, M. S. (2022). Random forest tree classification algorithm for predicating loan. Materials Today: Proceedings, 57, 2216–2222. https://doi.org/10.1016/J.MATPR.2021.12.322

Savchuk, S. A., Palacio, C., Gil, A., Tagliaro, F., Kuznetsov, R. M., Brito, A., & Appolonova, S. A. (2020). Determination of the chemical composition of alcoholic beverages by gas chromatography-mass spectrometry. Journal of Food Processing and Preservation, 44(9). https://doi.org/10.1111/jfpp.14676

Schober, P., & Vetter, T. R. (2021). Logistic regression in medical research. Anesthesia & Analgesia, 132(2), 365–366. https://doi.org/10.1213/ANE.0000000000005247

Septiana, A. T., & Asnani, A. (2013). Antioxidan activity of Sargassum duplicatum seaweed extract. Jurnal Teknologi Pertanian, 14(2), 79–86.

Tygert, M. (2021). A graphical method of cumulative differences between two subpopulations. Journal of Big Data, 8, 1–29. https://doi.org/10.1186/s40537-021-00540-9

Vijithananda, S. M., Jayatilake, M. L., Hewavithana, B., Gonçalves, T., Rato, L. M., Weerakoon, B. S., ... & Dissanayake, K. D. (2022). Feature extraction from MRI ADC images for brain tumor classification using machine learning techniques. BioMedical Engineering Online, 21(1), 1–21. https://doi.org/10.1186/s12938-022-01022-6

Yanti, A., Mursiti, S., Widiarti, N., Nurcahyo, B., & Alauhdin, M. (2019). Optimalisasi metode penentuan kadar etanol dan metanol pada minuman keras oplosan menggunakan Kromatografi Gas (KG). Indonesian Journal of Chemical Science, 8(1), 53–59.

Downloads

Published

2024-11-19
Abstract 7  .
PDF downloaded 10  .