Hierarchical Cluster Analysis Based on Waste Sources in Indonesia in 2022

Authors

  • Syarif Hidayatullah Universitas Negeri Surabaya
  • A’yunin Sofro Universitas Negeri Surabaya

DOI:

https://doi.org/10.21512/comtech.v15i2.11088

Keywords:

hierarchical cluster, waste sources, waste management

Abstract

Waste, as a result of human activities, is a complex issue that requires appropriate solutions. With the increasing volume of waste, waste management in Indonesia has become a major challenge. The research examined the waste problem in Indonesia, focusing on analyzing and grouping 311 regencies/cities based on waste sources in 2022. The research also aimed to provide an in-depth understanding of waste characteristics in each region as a basis for designing more effective waste management policies at the regional level. The research applied hierarchical clustering, combining Ward’s method with Euclidean distance analysis. The analysis shows 14 significant clusters with different waste composition characteristics. Interpretation of the cluster results identifies areas with low to high levels of waste. Clusters 1 to 4 have relatively little waste composition, while clusters 5 to 14 have increasing waste levels, with cluster 14 being an area with very high waste levels. The research results are expected to serve as a basis for the government to formulate more targeted and adaptive policies for handling waste in the future. The implications include improving waste management systems, recycling programs, and community education. By understanding the waste composition of each region, the government can implement solutions that suit its needs. The research provides an overview of the waste problem at the regional level in Indonesia and can be the basis for developing more effective policies. In future research, it is recommended to use more accurate and complete waste data in each regency/city for more in-depth results.

Dimensions

Plum Analytics

Author Biographies

Syarif Hidayatullah, Universitas Negeri Surabaya

Program Studi Sains Data, Fakultas Matematika dan Ilmu Pengetahuan Alam

A’yunin Sofro, Universitas Negeri Surabaya

Program Studi Sains Aktuaria, Fakultas Matematika dan Ilmu Pengetahuan Alam

References

Alter, B. J., Moses, M., DeSensi, R., O’Connell, B., Bernstein, C., McDermott, S., ... & Wasan, A. D. (2024). Hierarchical clustering applied to chronic pain drawings identifies undiagnosed fibromyalgia: Implications for busy clinical practice. The Journal of Pain, 25(7). https://doi.org/10.1016/j.jpain.2024.02.003

Artanti, F. W., Atika, N., Sholekha, K. P., Aderi, Z. S., & Yanuariska, A. M. (2024). Analisa pemerataan imunisasi campak pada anak sekolah di Jakarta dengan algoritma clusteing hierarki dan klasifikasi standar. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 354–359. https://doi.org/10.36040/jati.v8i1.7852

Charikar, M., Chatziafratis, V., Niazadeh, R., & Yaroslavtsev, G. (2019). Hierarchical clustering for euclidean data. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2721–2730). PMLR.

Chen, H., Ouyang, L., Liu, L., & Ma, Y. (2024). A multi-fidelity surrogate modeling method in the presence of non-hierarchical low-fidelity data. Aerospace Science and Technology, 146. https://doi.org/10.1016/j.ast.2024.108928

Choi, S., Lim, H., Lim, J., & Yoon, S. (2024). Retrofit building energy performance evaluation using an energy signature-based symbolic hierarchical clustering method. Building and Environment, 251. https://doi.org/10.1016/j.buildenv.2024.111206

Crake, D. A., Hambly, N. C., & Mann, R. G. (2023). HEADSS: HiErArchical Data Splitting and Stitching software for non-distributed clustering algorithms. Astronomy and Computing, 43, 1–9. https://doi.org/10.1016/j.ascom.2023.100709

De Sá, V. R., Muraoka, T., Koike, K., & Takahashi, H. (2024). Specification and formation process of enriched portions in Au veins in an epithermal deposit via clustering and geostatistical approaches. Ore Geology Reviews, 166, 1–20. https://doi.org/10.1016/j.oregeorev.2024.105891

Elderfield, N., Cook, O., & Wong, J. C. H. (2024). Fiber dispersion as a quality assessment metric for pultruded thermoplastic composites. Composites Part B: Engineering, 275. https://doi.org/10.1016/j.compositesb.2024.111321

Eszergár-Kiss, D., & Caesar, B. (2017). Definition of user groups applying Ward’s method. Transportation Research Procedia, 22, 25–34. https://doi.org/10.1016/j.trpro.2017.03.004

Fasya, A. H. Z., Ibad, M., & Handayani, D. (2022). Comprehensive sanitation situation analysis based on complete components in community-based total sanitation. Bali Medical Journal, 11(3), 1176–1179. https://doi.org/10.15562/bmj.v11i3.3536

Gagolewski, M., Cena, A., James, S., & Beliakov, G. (2023). Hierarchical clustering with OWA-based linkages, the Lance–Williams formula, and dendrogram inversions. Fuzzy Sets and Systems, 473, 1–12. https://doi.org/10.1016/j.fss.2023.108740

Großwendt, A., & Röglin, H. (2017). Improved analysis of complete-linkage clustering. Algorithmica, 78, 1131–1150. https://doi.org/10.1007/s00453-017-0284-6

Indarmawan, R. S. (2020) Kajian peran pemulung dalam pengurangan volume sampah di TPA Putri Cempo Kota Surakarta [Skripsi, Universitas Muhammadiyah Surakarta]. UMS ETD-db. https://eprints.ums.ac.id/82512/

Johnshon, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). Pearson.

Kumar, U., Legendre, C. P., Lee, J. C., Zhao, L., & Chao, B. F. (2022). On analyzing GNSS displacement field variability of Taiwan: Hierarchical agglomerative clustering based on dynamic time warping technique. Computers & Geosciences, 169. https://doi.org/10.1016/j.cageo.2022.105243

Li, T., Yang, L., Yang, J., Pu, R., Zhang, J., Tang, D., & Liu, T. (2024). Non-parameter clustering algorithm based on chain propagation and natural neighbor. Information Sciences, 672. https://doi.org/10.1016/j.ins.2024.120663

Mavaluru, D., Malar, R. S., Dharmarajlu, S. M., Auguskani, J. P. L., & Chellathurai, A. (2024). Deep hierarchical cluster analysis for assessing the water quality indicators for sustainable groundwater. Groundwater for Sustainable Development, 25. https://doi.org/10.1016/j.gsd.2024.101119

Mehta, D., Dhabuwala, J., Yadav, S. M., Kumar, V., & Azamathulla, H. M. (2023). Improving flood forecasting in Narmada river basin using hierarchical clustering and hydrological modelling. Results in Engineering, 20, 1–13. https://doi.org/10.1016/j.rineng.2023.101571

Mohbey, K. K., & Thakur, G. S. (2013). An experimental survey on single linkage clustering. International Journal of Computer Applications, 76(17), 6–10. https://doi.org/10.5120/13337-0327

Muradi, H., Bustamam, A., & Lestari, D. (2016). Application of hierarchical clustering ordered partitioning and collapsing hybrid in Ebola Virus phylogenetic analysis. In 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS) (pp. 317–323). IEEE. https://doi.org/10.1109/ICACSIS.2015.7415183

Rapati, R. C., Victor, A., Raharjo, A. R., & Nuraisyah, A. (2023). Plastic waste management to support the circular economy in the pulp and paper industry. Business Review and Case Studies, 4(1), 1–11. https://doi.org/10.17358/brcs.4.1.1

Reinaldi, Y., Ulinnuha, N., & Hafiyusholeh, M. (2021). Comparison of single linkage, complete linkage, and average linkage methods on community welfare analysis in cities and regencies in East Java. Jurnal Matematika, Statistika dan Komputasi, 18(1), 130–140. https://doi.org/10.20956/j.v18i1.14228

Rifai, A. P., Wibisono, R. A., Sari, D. K., & Sari, W. P. (2023). Pyrolyzer production system for waste management using group technology approach. J@ti Undip: Jurnal Teknik Industri, 18(3), 152–159. https://doi.org/10.14710/jati.18.3.152-159

Ronchi, A., Sterzi, A., Gandolfi, M., Belarouci, A., Giannetti, C., Del Fatti, N., Banfi, F., & Ferrini, G. (2021). Discrimination of nano-objects via cluster analysis techniques applied to time-resolved thermo-acoustic microscopy. Ultrasonics, 114, 1–9. https://doi.org/10.1016/j.ultras.2021.106403

Sadeghi, M., Casey, P., Carranza, E. J. M., & Lynch, E. P. (2024). Principal components analysis and K-Means clustering of till geochemical data: Mapping and targeting of prospective areas for lithium exploration in Västernorrland Region, Sweden. Ore Geology Reviews, 167, 1–12. https://doi.org/10.1016/j.oregeorev.2024.106002

Soleimani, M., Esmaeilbeigi, M., Cavoretto, R., & De Rossi, A. (2024). Analyzing the effects of various isotropic and anisotropic kernels on critical heat flux prediction using Gaussian process regression. Engineering Applications of Artificial Intelligence, 133. https://doi.org/10.1016/j.engappai.2024.108351

Suharyono, & Digdowiseiso, K. (2021). The effects of environmental quality on Indonesia's inbound tourism. International Journal of Energy Economics and Policy, 11(1), 9–14. https://doi.org/10.32479/ijeep.10526

Torence, A., Ramadhan, M., & Ginting, E. F. (2023). Penerapan data mining menggunakan algoritma K-Means clustering dalam pengelompokkan data penerima vaksinasi COVID-19. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 2(3), 482–488. https://doi.org/10.53513/jursi.v2i3.6829

Wardhana, W. S., Tolle, H., & Kharisma, A. P. (2019). Pengembangan aplikasi mobile transaksi bank sampah online berbasis Android (Studi kasus: Bank Sampah Malang). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(7), 6548–6555.

Yu, H., & Hou, X. (2022). Hierarchical clustering in astronomy. Astronomy and Computing, 41. https://doi.org/10.1016/j.ascom.2022.100662

Yunita, Adrianshyah, M., & Amalia, H. (2021). Sistem informasi bank sampah dengan model prototype. INTI Nusa Mandiri, 16(1), 15–24. https://doi.org/10.33480/inti.v16i1.2269

Downloads

Published

2024-11-12
Abstract 1  .
PDF downloaded 2  .