Hierarchical Cluster Analysis Based on Waste Sources in Indonesia in 2022
DOI:
https://doi.org/10.21512/comtech.v15i2.11088Keywords:
hierarchical cluster, waste sources, waste managementAbstract
Waste, as a result of human activities, is a complex issue that requires appropriate solutions. With the increasing volume of waste, waste management in Indonesia has become a major challenge. The research examined the waste problem in Indonesia, focusing on analyzing and grouping 311 regencies/cities based on waste sources in 2022. The research also aimed to provide an in-depth understanding of waste characteristics in each region as a basis for designing more effective waste management policies at the regional level. The research applied hierarchical clustering, combining Ward’s method with Euclidean distance analysis. The analysis shows 14 significant clusters with different waste composition characteristics. Interpretation of the cluster results identifies areas with low to high levels of waste. Clusters 1 to 4 have relatively little waste composition, while clusters 5 to 14 have increasing waste levels, with cluster 14 being an area with very high waste levels. The research results are expected to serve as a basis for the government to formulate more targeted and adaptive policies for handling waste in the future. The implications include improving waste management systems, recycling programs, and community education. By understanding the waste composition of each region, the government can implement solutions that suit its needs. The research provides an overview of the waste problem at the regional level in Indonesia and can be the basis for developing more effective policies. In future research, it is recommended to use more accurate and complete waste data in each regency/city for more in-depth results.
Plum Analytics
References
Alter, B. J., Moses, M., DeSensi, R., O’Connell, B., Bernstein, C., McDermott, S., ... & Wasan, A. D. (2024). Hierarchical clustering applied to chronic pain drawings identifies undiagnosed fibromyalgia: Implications for busy clinical practice. The Journal of Pain, 25(7). https://doi.org/10.1016/j.jpain.2024.02.003
Artanti, F. W., Atika, N., Sholekha, K. P., Aderi, Z. S., & Yanuariska, A. M. (2024). Analisa pemerataan imunisasi campak pada anak sekolah di Jakarta dengan algoritma clusteing hierarki dan klasifikasi standar. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 354–359. https://doi.org/10.36040/jati.v8i1.7852
Charikar, M., Chatziafratis, V., Niazadeh, R., & Yaroslavtsev, G. (2019). Hierarchical clustering for euclidean data. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2721–2730). PMLR.
Chen, H., Ouyang, L., Liu, L., & Ma, Y. (2024). A multi-fidelity surrogate modeling method in the presence of non-hierarchical low-fidelity data. Aerospace Science and Technology, 146. https://doi.org/10.1016/j.ast.2024.108928
Choi, S., Lim, H., Lim, J., & Yoon, S. (2024). Retrofit building energy performance evaluation using an energy signature-based symbolic hierarchical clustering method. Building and Environment, 251. https://doi.org/10.1016/j.buildenv.2024.111206
Crake, D. A., Hambly, N. C., & Mann, R. G. (2023). HEADSS: HiErArchical Data Splitting and Stitching software for non-distributed clustering algorithms. Astronomy and Computing, 43, 1–9. https://doi.org/10.1016/j.ascom.2023.100709
De Sá, V. R., Muraoka, T., Koike, K., & Takahashi, H. (2024). Specification and formation process of enriched portions in Au veins in an epithermal deposit via clustering and geostatistical approaches. Ore Geology Reviews, 166, 1–20. https://doi.org/10.1016/j.oregeorev.2024.105891
Elderfield, N., Cook, O., & Wong, J. C. H. (2024). Fiber dispersion as a quality assessment metric for pultruded thermoplastic composites. Composites Part B: Engineering, 275. https://doi.org/10.1016/j.compositesb.2024.111321
Eszergár-Kiss, D., & Caesar, B. (2017). Definition of user groups applying Ward’s method. Transportation Research Procedia, 22, 25–34. https://doi.org/10.1016/j.trpro.2017.03.004
Fasya, A. H. Z., Ibad, M., & Handayani, D. (2022). Comprehensive sanitation situation analysis based on complete components in community-based total sanitation. Bali Medical Journal, 11(3), 1176–1179. https://doi.org/10.15562/bmj.v11i3.3536
Gagolewski, M., Cena, A., James, S., & Beliakov, G. (2023). Hierarchical clustering with OWA-based linkages, the Lance–Williams formula, and dendrogram inversions. Fuzzy Sets and Systems, 473, 1–12. https://doi.org/10.1016/j.fss.2023.108740
Großwendt, A., & Röglin, H. (2017). Improved analysis of complete-linkage clustering. Algorithmica, 78, 1131–1150. https://doi.org/10.1007/s00453-017-0284-6
Indarmawan, R. S. (2020) Kajian peran pemulung dalam pengurangan volume sampah di TPA Putri Cempo Kota Surakarta [Skripsi, Universitas Muhammadiyah Surakarta]. UMS ETD-db. https://eprints.ums.ac.id/82512/
Johnshon, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). Pearson.
Kumar, U., Legendre, C. P., Lee, J. C., Zhao, L., & Chao, B. F. (2022). On analyzing GNSS displacement field variability of Taiwan: Hierarchical agglomerative clustering based on dynamic time warping technique. Computers & Geosciences, 169. https://doi.org/10.1016/j.cageo.2022.105243
Li, T., Yang, L., Yang, J., Pu, R., Zhang, J., Tang, D., & Liu, T. (2024). Non-parameter clustering algorithm based on chain propagation and natural neighbor. Information Sciences, 672. https://doi.org/10.1016/j.ins.2024.120663
Mavaluru, D., Malar, R. S., Dharmarajlu, S. M., Auguskani, J. P. L., & Chellathurai, A. (2024). Deep hierarchical cluster analysis for assessing the water quality indicators for sustainable groundwater. Groundwater for Sustainable Development, 25. https://doi.org/10.1016/j.gsd.2024.101119
Mehta, D., Dhabuwala, J., Yadav, S. M., Kumar, V., & Azamathulla, H. M. (2023). Improving flood forecasting in Narmada river basin using hierarchical clustering and hydrological modelling. Results in Engineering, 20, 1–13. https://doi.org/10.1016/j.rineng.2023.101571
Mohbey, K. K., & Thakur, G. S. (2013). An experimental survey on single linkage clustering. International Journal of Computer Applications, 76(17), 6–10. https://doi.org/10.5120/13337-0327
Muradi, H., Bustamam, A., & Lestari, D. (2016). Application of hierarchical clustering ordered partitioning and collapsing hybrid in Ebola Virus phylogenetic analysis. In 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS) (pp. 317–323). IEEE. https://doi.org/10.1109/ICACSIS.2015.7415183
Rapati, R. C., Victor, A., Raharjo, A. R., & Nuraisyah, A. (2023). Plastic waste management to support the circular economy in the pulp and paper industry. Business Review and Case Studies, 4(1), 1–11. https://doi.org/10.17358/brcs.4.1.1
Reinaldi, Y., Ulinnuha, N., & Hafiyusholeh, M. (2021). Comparison of single linkage, complete linkage, and average linkage methods on community welfare analysis in cities and regencies in East Java. Jurnal Matematika, Statistika dan Komputasi, 18(1), 130–140. https://doi.org/10.20956/j.v18i1.14228
Rifai, A. P., Wibisono, R. A., Sari, D. K., & Sari, W. P. (2023). Pyrolyzer production system for waste management using group technology approach. J@ti Undip: Jurnal Teknik Industri, 18(3), 152–159. https://doi.org/10.14710/jati.18.3.152-159
Ronchi, A., Sterzi, A., Gandolfi, M., Belarouci, A., Giannetti, C., Del Fatti, N., Banfi, F., & Ferrini, G. (2021). Discrimination of nano-objects via cluster analysis techniques applied to time-resolved thermo-acoustic microscopy. Ultrasonics, 114, 1–9. https://doi.org/10.1016/j.ultras.2021.106403
Sadeghi, M., Casey, P., Carranza, E. J. M., & Lynch, E. P. (2024). Principal components analysis and K-Means clustering of till geochemical data: Mapping and targeting of prospective areas for lithium exploration in Västernorrland Region, Sweden. Ore Geology Reviews, 167, 1–12. https://doi.org/10.1016/j.oregeorev.2024.106002
Soleimani, M., Esmaeilbeigi, M., Cavoretto, R., & De Rossi, A. (2024). Analyzing the effects of various isotropic and anisotropic kernels on critical heat flux prediction using Gaussian process regression. Engineering Applications of Artificial Intelligence, 133. https://doi.org/10.1016/j.engappai.2024.108351
Suharyono, & Digdowiseiso, K. (2021). The effects of environmental quality on Indonesia's inbound tourism. International Journal of Energy Economics and Policy, 11(1), 9–14. https://doi.org/10.32479/ijeep.10526
Torence, A., Ramadhan, M., & Ginting, E. F. (2023). Penerapan data mining menggunakan algoritma K-Means clustering dalam pengelompokkan data penerima vaksinasi COVID-19. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 2(3), 482–488. https://doi.org/10.53513/jursi.v2i3.6829
Wardhana, W. S., Tolle, H., & Kharisma, A. P. (2019). Pengembangan aplikasi mobile transaksi bank sampah online berbasis Android (Studi kasus: Bank Sampah Malang). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(7), 6548–6555.
Yu, H., & Hou, X. (2022). Hierarchical clustering in astronomy. Astronomy and Computing, 41. https://doi.org/10.1016/j.ascom.2022.100662
Yunita, Adrianshyah, M., & Amalia, H. (2021). Sistem informasi bank sampah dengan model prototype. INTI Nusa Mandiri, 16(1), 15–24. https://doi.org/10.33480/inti.v16i1.2269
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Syarif Hidayatullah, A’yunin Sofro
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
USER RIGHTS
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows: