Water Quality Monitoring System Based on the Internet of Things (IoT) for Vannamei Shrimp Farming

Authors

  • Rosliana Eso Universitas Halu Oleo
  • Hasmina Tari Mokui Universitas Halu Oleo
  • Arman Universitas Halu Oleo
  • Laode Safiuddin Universitas Halu Oleo
  • Husein Universitas Halu Oleo

DOI:

https://doi.org/10.21512/comtech.v15i1.10657

Keywords:

water quality monitoring, Internet of Things (IoT), Vannamei shrimp

Abstract

As Internet of Things (IoT) technology develops, water quality monitoring systems for Vannamei shrimp farms have become more inventive and straightforward. The prototype IoT system monitors and controls the pool using sensors that can measure water quality parameters, such as temperature, pH, and salinity. The research aimed to design an automated water quality monitoring system for Vannamei shrimp aquaculture. The research used the E-4052C sensor, DS18B20 sensor, and DFRobot V1.0 sensor as data transmitting hardware (transmitter) and the receiving hardware microcontroller NodeMCU ESP32 as data processing, management, and control system tools. Then, the system used a Wi-Fi network to transfer data from the microcontroller to the Message Queue Telemetry Transport (MQTT) server as a data cloud. Several software programs, including Telegram, Node-Red, and ThingSpeak, help Android devices display real-time data. Test results for the accuracy of the sensor’s reading on water pH are 99.71, with an error rate of 0.29%. Meanwhile, the accuracy of the temperature sensor is 98.03 with an error rate of 1.7%. On the other hand, the accuracy of the salinity sensor is 99.49, with an error rate of 0.41%. The results indicate that all sensors have excellent performance. The real-time monitoring display and Android Telegram notification functions are good, and the automatic water quality monitoring tool is successfully operating in the Vannamei shrimp pool in Pamandati, South Konawe District, Southeast Sulawesi ssProvince, Indonesia.

Dimensions

Plum Analytics

Author Biographies

Rosliana Eso, Universitas Halu Oleo

Physics Education Study Program,  Department of Physics Education, Faculty of Teacher Training and Education

Hasmina Tari Mokui, Universitas Halu Oleo

Electrical Engineering Study Program, Department of Electrical Engineering, Faculty of Engineering

Arman, Universitas Halu Oleo

Mathematics Study Program, Department of Mathematics, Faculty of Matematics and science

Laode Safiuddin, Universitas Halu Oleo

Physics Education Study Program,  Department of Physics Education, Faculty of Teacher Training and Education

Husein, Universitas Halu Oleo

Physics Education Study Program,  Department of Physics Education, Faculty of Teacher Training and Education

References

Abdullah, M. S. T., & Mazalan, L. (2022). Smart automation aquaponics monitoring system. International Journal on Informatics Visualization (JOIV), 6(1–2), 256–263. https://dx.doi.org/10.30630/joiv.6.1-2.925

Ahmad, Y. A., Gunawan, T. S., Mansor, H., Hamida, B. A., Hishamudin, A. F., & Arifin, F. (2021). On the evaluation of DHT22 temperature sensor for IoT application. In 2021 8th International Conference on Computer and Communication Engineering (ICCCE) (pp. 131–134). IEEE. https://doi.org/10.1109/ICCCE50029.2021.9467147

Artiyasa, M., Kusumah, I. H., Suryana, A., Edwinanto, Sidik, A. D. W. M., & Junfithrana, A. P. (2020). Comparative study of Internet of Things (IoT) platform for smart home lighting control using NodeMCU with Thingspeak and Blynk web applications. FIDELITY: Jurnal Teknik Elektro, 2(1), 1–6. https://doi.org/10.52005/fidelity.v2i1.103

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of things: A survey. Computer Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

Azzedin, F., & Alhazmi, T. (2023). Secure data distribution architecture in IoT using MQTT. Applied Sciences, 13(4), 1–13. https://doi.org/10.3390/app13042515

Bahri, S., Mardhia, D., & Saputra, O. (2020). Growth and graduation of Vannamei shell life (Litopenaeus Vannamei) with feeding tray (ANCO) system in AV 8 Lim Shrimp Organization (LSO) in Sumbawa district. Jurnal Biologi Tropis, 20(2), 279–289. https://doi.org/10.29303/jbt.v20i2.1812

Binti Mazalan, N. (2019). Application of wireless Internet in networking using NodeMCU and Blynk app. In Seminar LIS 2019.

Bucci, G., Ciancetta, F., Fiorucci, E., Fioravanti, A., & Prudenzi, A. (2020). An Internet-of-things system based on powerline technology for pulse oximetry measurements. Acta IMEKO, 9(4), 114–120. https://doi.org/10.21014/acta_imeko.v9i4.724

Capelo, J., Ruiz, E., Asanza, V., Toscano-Quiroga, T., Sánchez-Pozo, N. N., Lorente-Leyva, L. L., & Peluffo-Ordóñez, D. H. (2021). Raspberry Pi-based IoT for shrimp farms real-time remote monitoring with automated system. In 2021 International Conference on Applied Electronics (AE) (pp. 1–4). https://doi.org/10.23919/AE51540.2021.9542907

Ernawati, Rafiy, M., & Surianti. (2020). Industri pengolahan perikanan di Kabupaten Konawe Selatan, Sulawesi Tenggara. Buletin Ilmiah Marina Sosial Ekonomi Kelautan dan Perikanan, 6(1), 1–10. https://doi.org/10.15578/marina.v6i1.7772

Errichiello, L., & Marasco, A. (2014). Open service innovation in smart cities: A framework for exploring innovation networks in the development of new city services. Advanced Engineering Forum, 11, 115–124. https://doi.org/10.4028/www.scientific.net/aef.11.115

Fezari, M., & Al Dahoud, A. (2018). Integrated development environment “IDE” for Arduino. ResearchGate. https://www.researchgate.net/publication/328615543

Haris, A., Sikumbang, H., & Anwar, L. M. S. (2021). Mikro-irigasi cerdas dengan sprinkler menggunakan Fuzzy Logic pada lahan terbatas untuk Pertanian 4.0. Faktor Excata, 14(4), 168–174.

Intan, I., Nurlina, Pangerang, F., & Mulyawan, A. (2020). Water circulation monitoring system in the Vanname shrimp cultivation based on Internet of thing. Journal Pekommas, 5(2), 203–214. https://doi.org/10.30818/jpkm.2020.2050209

Nayyar, A., & Puri, V. (2016). Smart farming: IoT based smart sensors agriculture stick for live temperature and moisture monitoring using Arduino, cloud computing & solar technology. In The International Conference on Communication and Computing Systems (pp. 673–680).

Nurazizah, E., Ramdhani, M., & Rizal, A. (2017). Rancang bangun termometer digital berbasis sensor Ds18B20 untuk penyandang tunanetra. EProceeding of Engineering, 4(3), 3294–3301.

Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7), 1–9. https://doi.org/10.1016/j.heliyon.2020.e04096

Pontón, J. M. P., Ojeda, V., Asanza, V., Lorente-Leyva, L. L., & Peluffo-Ordóñez, D. H. (2023). Design and Implementation of an IoT control and monitoring system for the optimization of shrimp pools using LoRa technology. International Journal of Advanced Computer Science and Applications, 14(8), 263–272.

Pratama, A. S., Efendi, A. H., Burhanudin, D., & Rofiq, M. (2019). SIMKARTU (Sistem Monitoring Kualitas Air Tambak Udang) berbasis Arduino dan SMS Gateway. Jurnal SITECH: Sistem Informasi dan Teknologi, 2(1), 121–126. https://doi.org/10.24176/sitech.v2i1.3498

Qazi, S., Khawaja, B. A., & Farooq, Q. U. (2022). IoT-equipped and AI-enabled next generation smart agriculture: A critical review, current challenges and future trends. IEEE Access, 10, 21219–21235. https://doi.org/10.1109/ACCESS.2022.3152544

Saleem, Y., Crespi, N., Rehmani, M. H., & Copeland, R. (2019). Internet of things-aided smart grid: Technologies, architectures, applications, prototypes, and future research directions. IEEE Access, 7, 62962–63003. https://doi.org/10.1109/ACCESS.2019.2913984

Supito. (2017). Teknik budidaya udang Vaname (Litopenaeus Vannamei). Balai Besar Perikanan Budidaya Air Payau (BBPBAP) Jepara.

Surya, R. A., Ismail, D., Yasin, A., Aba, L., & Erif, L. O. M. (2023). Analysis sustainability status of laeya river management for raw water supply in South Konawe Regency Southeast Sulawesi Province. DEPIK: Jurnal Ilmu-Ilmu Perairan, Pesisir, dan Perikanan, 12(3), 421–430. https://doi.org/10.13170/depik.12.3.33538

Toruan, F. L., & Galina, M. (2023). Internet of things- Based automatic feeder and monitoring of water temperature, PH, and salinity for Litopenaeus Vannamei shrimp. Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, 7(1), 9–20. http://doi.org/10.31961/eltikom.v7i1.658

Tran-Dang, H., Krommenacker, N., Charpentier, P., & Kim, D. S. (2020). Toward the Internet of things for physical internet: Perspectives and challenges. IEEE Internet of Things Journal, 7(6), 4711–4736. https://doi.org/10.1109/JIOT.2020.2971736

Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328

Zhao, F., Lin, W., Hu, J., Liu, S., Yu, F., Chen, X., ... & Shao, L. (2022). Salinity and temperature dual-parameter sensor based on fiber ring laser with tapered side-hole fiber embedded in Sagnac interferometer. Sensors, 22(21), 1–14. https://doi.org/10.3390/s22218533

Zulkifli, C. Z., Garfan, S., Talal, M., Alamoodi, A. H., Alamleh, A., Ahmaro, I. Y., ... & Chiang, H. H. (2022). IoT-based water monitoring systems: A systematic review. Water, 14(22), 1–29. https://doi.org/10.3390/w14223621

Downloads

Published

2024-06-05

Issue

Section

Articles
Abstract 660  .
PDF downloaded 342  .