RECOGNITION DESIGN OF LICENSE PLATE AND CAR TYPE USING TESSERACT OCR AND EmguCV
DOI:
https://doi.org/10.21512/commit.v6i2.573Abstract
The goal of the research is to design and implement software that can recognize license plates and car types from images. The method used for the research is soft computing using library of EmguCV. There are four phases in creating the software, i.e., input image process, pre-processing, training processing and recognition. Firstly, user enters the car image. Then, the program reads and does pre-processing the image from bitmap form into vector. The next process is training process, which is learning phase in order the system to be able recognize an object (in this case license plate and car type), and in the end is the recognition process itself. The result is data about the car types and the license plates that have been entered. Using simulation, this software successfully recognized license plate by 80.223% accurate and car type 75% accurate.Keywords: Image; Pre-Processing; License plate and Car Type Recognition, Training
Plum Analytics
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
USER RIGHTS
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows: Creative Commons Attribution-Share Alike (CC BY-SA)