Corpus-Based Analysis of Online Hoax Discourse on Transportation Subject Picturing Indonesian Issue


  • Yune Andryani Pinem STTKD School of Aerospace Technology Yogyakarta



web-based corpus, digital forensic, digital hoax, discourse prosody, socio-pragmatics


The research discussed Indonesian hoax on transportation, spread using chain messages over social media, a major hoax subject. Setting social structure as an element to consider in hoax discourse gave different perspectives on why hoax news took place. Contrasting identified online hoax discourse to corpus-derived prosody could be interpreted using a socio-pragmatic approach by Lin and Chung (2016). The research tried to look at how discourse on hoax correlated to real social issues among Indonesian people. Digital forensic was done by tracking discourse used as data from hoax news collection on during 2017-2019. Discourse was later generated into clusters of subject idea of ‘tilang’, ‘jalan tol’, public land transport and infrastructure, ‘kecelakaan pesawat’, ‘lowongan kerja’, ‘China’, insecurity toward government and ‘kecelakaan kapal’. The subject idea was later consulted to Indonesian Web Corpus (IWaC). Through the socio-pragmatic approach, prosody derived by contrasting process portrayed hoax on transportation as a reflection of unsolved current social problems among Indonesian community including distrust toward the government, unawareness on transport safety, law and regulation, economic status, and trend. The finding of the research is recommended to take action toward those problems to eliminate hoax spread in the transportation sector.


Plum Analytics


Alcaraz-Mármol, G., & Almela, J. S. (2016). The semantic prosody of the words inmigración and inmigrante in the Spanish written media: A corpus-based study of two national newspapers. Revista Signos, 49(91), 145-167.

Amalia, R. (2018). Kerja sama maritim Indonesia-Tiongkok menuju visi Indonesia sebagai poros maritim dunia. E-Jurnal lmu Hubungan Internasional, 6(3), 1271-1280.

Bancroft-Billings, S. (2020). Identifying spoken technical legal vocabulary in a law school classroom. English for Specific Purposes, 60, 9-25.

Bronstein, M. V., Pennycook, G., Bear, A., Rand, D. G., & Cannon, T. D. (2019). Belief in fake news is associated with delusionality, dogmatism, religious fundamentalism, and reduced analytic thinking. Journal of Applied Research in Memory and Cognition, 8(1), 108-117.

Dinas Perhubungan Aceh. (2020). Usulan Kemenhub jadi pemantik perkuat kerja sama transportasi negara ASEAN. Retrieved from

Du, Y., Wang, B., & Yang, L. (2018). A corpus-based study on the semantic prosody of quasi-affix ‘Zu’. Lecture Notes in Computer Science, 11173, 445-453.

Ellis, N. C., Frey, E., & Jalkanen, I. (2009). The psycholinguistic reality of collocation and semantic prosody. In U. Römer & R. Schulze (Eds.), Exploring the Lexis-Grammar Interface (pp. 89–115). Amsterdam: John Benjamins Publishing.

Erdentug, F., & Vefalı, G. M. (2018). What is ‘old’ and ‘past’ in new age discourse? A qualitative analysis of corpus evidence. Discourse, Context, and Media, 24, 85-91.

Fioramonte, A., & Vásquez, C. (2019). Multi-party talk in the medical encounter: Socio-pragmatic functions of family members’ contributions in the treatment advice phase. Journal of Pragmatics, 139, 132-145.

Gjylbegaj, V. (2018). Fake news in the age of social media. IJASOS - International E-Journal of Advances in Social Sciences, 4(11), 383-391.

Hauser, D. J., & Schwarz, N. (2018). How seemingly innocuous words can bias judgment: Semantic prosody and impression formation. Journal of Experimental Social Psychology, 75, 11-18.

Huang, Y. F., & Chen, P. H. (2020). Fake news detection using an ensemble learning model based on self-adaptive harmony search algorithms. Expert Systems with Applications, 159, 113584.

Indhiarti, T. R. (2019). A corpus-driven discourse analysis of metaphor in climate change: A preliminary study. ICEL 2019: First International Conference on Advances in Education. Malang, Indonesia.

Julaika, H. (2020). Kemenhub tawarkan proyek transportasi IKN ke Tiongkok dan ASEAN. Retrieved from

Ko, H., Hong, J. Y., Kim, S., Mesicek, L., & Na, I. S. (2019). Human-machine interaction: A case study on fake news detection using a backtracking based on a cognitive system. Cognitive Systems Research, 55, 77-81.

Kotait, R. (2018). On translating semantic prosody: A corpus-based cognitive-semantic approach. Proceedings of the 1st International Conference of the Department of English in Literature, Linguistics and Translation – Travelling Theories: Origins and Manifestations. Cairo, Egypt. pp. 1-59.

Kumar, S. (2017). Deciding metrics for detecting false news and influence on Twitter. International Journal of Research Publications in Engineeringand Technology (IJRPET), 3(7), 96-100.

Lin, Y. Y., & Chung, S. F. (2016). A corpus-based on the semantic prosody of Challenge. Taiwan Journal of TESOL, 13(2), 99-146.

Meinarni, N. P. S., & Iswara, I. B. A. I. (2018). Hoax and its mechanism in Indonesia. Proceedings of the International Conference of Communication Science Research (ICCSR 2018). Surabaya, Indonesia. pp. 183-186.

Mukhamediev, R. I., Yakunin, K., Mussabayev, R., Buldybayev, T., Kuchin, Y., Murzakhmetov, S., & Yelis, M. (2020). Classification of negative information on socially significant topics in mass media. Symmetry, 12(12), 1-23.

Omidian, T., & Siyanova-Chanturia, A. (2020). Semantic prosody revisited: Implications for language learning. TESOL Quarterly, 54(2), 512-524.

Peng, J., Choo, K. K. R., & Ashman, H. (2016). Bit-level n-gram based forensic authorship analysis on social media: Identifying individuals from linguistic profiles. Journal of Network and Computer Applications, 70, 171-182.

Praminatih, G. A., & Nafiah, H. (2018). [Woman]’s world portrayed in literary works of Jane Austen. Lingua Cultura, 12(1), 77-82.

Sayaheen, B., & Malkawi, M. N. (2019). Understanding the nature of Arab-Israeli conflict: A corpus-based study of semantic prosody in Arabic political discourse. Lebende Sprachen, 64(2), 309-322.

Singh, M., Bhatt, M. W., Bedi, H. S., & Mishra, U. (2020). Performance of Bernoulli’s naive bayes classifier in the detection of fake news. Materials Today: Proceedings.

Sirajudeen, S. M., Azmi, N. F. A., & Abubakar, A. I. (2017). Online fake news detection algorithm. Journal of Theoretical and Applied Information Technology, 95(17), 4114-4122.

Sutu, R. M. (2019). Fake news, from social media to television case study of the Romanian presidential elections 2019. Styles of Communication, 11(2), 81-92.

Tukina, Mozin, A. R., & Sanjaya, M. (2020). Disruptive Innovation: A Case of Solving Hoax Information in Indonesia. Humaniora, 11(1), 7-11.

Uyun, F. (2017). Kondisi hubungan triangular Indonesia-Tiongkok-Jepang setelah terbentuknya konsorsium PT KCIC. Analisis Hubungan Internasional, 6(2), 57-64.

Wijana, I. D. P. (2020). Pragmatik sebagai penangkal hoaks dan peran ilmuwan bahasa di era digital. Jala Bahasa: Jurnal Ilmiah Kebahasaan, 16(2), 171-178.

Yamin, M., & Windymadaksa, S. (2017). Pembangunan kereta cepat Jakarta-Bandung sebagai mercusuar hubungan Indonesia-Tiongkok. Jurnal Politik Profetik, 5(2), 200-218.

Zhang, X., & Ghorbani, A. A. (2020). An overview of online fake news: Characterization, detection, and discussion. Information Processing and Management, 57(2), 102025.

Zottola, A. (2021). Transgender identities in the press: A corpus-based discourse Analysis. London: Bloomsbury Publishing.



Abstract 524  .
PDF downloaded 327  .