Analisis Determinan Berat Badan Lahir Rendah (BBLR) Di Provinsi Nusa Tenggara Timur Tahun 2017

Authors

  • Elina Mayasari Politeknik Statistika STIS
  • Geraldi Putra Prasetya Balebu Politeknik Statistika STIS
  • Latifah Hasanah Politeknik Statistika STIS
  • Rizka Wulandari Politeknik Statistika STIS
  • Rani Nooraeni Politeknik Statistika STIS

DOI:

https://doi.org/10.21512/becossjournal.v2i2.6413

Keywords:

Low Birthweight, logistic regression, education level

Abstract

Health is one of the essential needs for human beings, and even became a major issue that indicates achievement of a country or a region. Health can also be viewed from the condition of the infants, which can be measure from Infant Mortality Rate (IMR). This indicator shows a high rate especially because of low birthweight. The cases of low birthweight is one of the highest case that occurred in developing countries, including Indonesia. Nusa Tenggara Timur (NTT) province in Indonesia, is one of the most common places where this case is most likely to happened. The percentage of the low birthweight case is higher than the average case in Indonesia. Therefore, this research paper aim to investigate variables which are responsible for causing low birthweight case in such a high number in NTT on 2017. The method used for analysis is logistic regression. The result indicate that mother’s education level is significantly affecting low birthweight cases in NTT.

Dimensions

Plum Analytics

Author Biographies

Elina Mayasari, Politeknik Statistika STIS

Student of D4 Statistics Study Program

Geraldi Putra Prasetya Balebu, Politeknik Statistika STIS

Student of D4 Statistics Study Program

Latifah Hasanah, Politeknik Statistika STIS

Student of D4 Statistics Study Program

Rizka Wulandari, Politeknik Statistika STIS

Student of D4 Statistics Study Program

Rani Nooraeni, Politeknik Statistika STIS

Lecturer of D4 Statistics Study Program

References

Agarwal, K., Agarwal, A., Agrawal, V., Agrawal, P. dan Chaudhary, V. (2011). Prevalence and determinants of” low birth weight” among institutional deliveries.Annals of Nigerian Medicine, 5(2), 48.

Agresti, A. 2002. Categorical Data Analysis. Second Edition. New Jersey: John Wiley and Sons, INC.

BAPPENAS, BPS, UN POPULATION FUND. Proyeksi Penduduk Indonesia 2010-2035 (Hal.20).2013. Jakarta-Indonesia.

BKKBN, BPS, Kemenkes. 2018. Survei Demografi dan Kesehatan Indonesia 2017. Jakarta: Badan Kependudukan dan Keluarga Berencana Nasional.

Bunga, et al (2017).“Analisis Determinan Berat Bayi Lahir Rendah (BBLR) Pada Anak Usia 0-59 Bulan di NTT, Kalimantan Tengah, dan Papua”

Hafid, Wahyuni; Fraining Deisi Badu; dan Lili Pramutia Laha. 2018. Analisis Determinan Kejadian Berat Badan Lahir Rendah (BBLR) di RSUD Tani dan Nelayan. Gorontalo of Public Health.1(1). 1 – 7.

Kuncoro, Mudrajad. 2001. Metode Kuantitatif Teori Dan Aplikasi Untuk Bisnis Dan Ekonomi. AMP YKPN. Yogyakarta

Kristin Rosela, Etri Taviane, dan Rena Oky Alestari. 2016. Pengaruh Pendidikan Kesehatan Terhadap Tingkat Pengetahuan Ibu Hamil Dalam Pencegahan Terjadinya Kelahiran Bayi Berat Badan Lahir Rendah (BBLR) di Wilayah Kerja UPTD Puskesmas Pahandut Palangkaraya. Dinamika Kesehatan. 7(2). 60 – 67.

Mahdalena, Hj.Endang Sri P Ningsih, H.Sugian Noor. 2014. Pengaruh Rokok Terhadap Berat Bayi Lahir Rendah di RSUD Banjarbaru. Jurnal Skala Kesehatan.5(2).1-6.

Nahar, N., Afroza, S. dan Hossain, M. (1998).Incidence of low birth weight in three selected communities of Bangladesh. Bangladesh Med Res Counc Bull, 24(2), 49-54.

Downloads

Published

2020-05-31

Issue

Section

Articles
Abstract 866  .
PDF downloaded 2293  .