
Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

57

AethelmE, HTML5 Game Engine
with Multiple Canvas Elements

Kevin Gunawan
Computer Science Program
Bina Nusantara University

Jakarta, Indonesia

Raymond Bahana
Computer Science Program
Bina Nusantara University

Jakarta, Indonesia
rbahana@binus.edu

Abstract— Game engine is software which ease the
game development. As the processor power technology
evolved and the HTML5 (HyperText Markup Language 5)
specification are developed, browsers nowadays can
natively (without any need for external plug-in) display
animations and multimedia files (audio and video) using
JavaScript as the programming language. Some of the
features which are used in this research are HTML5‘s
canvas and audio elements. The problem is that none of
the existing free HTML5 game engines is able to support
multiple canvas elements. This research will create a game
engine, called AethelmE, which support multiple canvas
elements as its unique feature. This game engine is also
able to support sprite transformation, browsers
compatibility, external asset loading, and audio format
compatibility. This research successfully resulted in
creating an HTML5 game engine which supports multiple
canvas elements. It also supports all the scopes, with a
small exception on sound format compatibility. Moreover,
this research conducted a performance comparison testing
of multiple HTML5 game engines, from which can be
concluded that multiple canvas elements does not give
significant performance gain compared to a single canvas.

Keywords—Game engine, HTML5, multiple canvas elements

I. INTRODUCTION
Gaming industry has been an interesting and challenging

field to work on, as it requires technical knowledge and
creativity at the same time. It has a large audience, making the
industry both easy (more people will play the game) and hard
(people demand more features from the game) for the
developer. This industry also has a wide range of technology
on which games can be implemented and played. There are
many game platforms, console and non-console, that exist
nowadays. The variety of the game platforms results in
difficulties in developing games, since they have different
frameworks and different language to work on. Thus, in order
to develop a game without taking a long time, it is better for
not doing it from scratch, but instead using an additional layer,
which people usually call a game engine.

The usage of game engine is especially important when it
comes to new technology, such as HTML5. HTML5 is a new
standard for HTML. Its technology is based on HTML, CSS
(Cascading Style Sheets), DOM (Document Object Model),
and JavaScript [1]. Since developers might not be accustomed
to it and the technology itself has a steep learning curve, game
engine is necessary to help developers create games with high
quality within a short period of time.

Several HTML5-based game engines exist, each with
advantages and uniqueness. Some examples are Crafty, Impact,
LimeJS, Cocos2D, EntityJS. Some use JavaScript as their
controller, while others use CSS. Some are GUI (Graphical
user interface)-based, while others acts only as an external
library.

These game engines have something in common: they
generally use HTML5‘s new canvas element, and they use only
one canvas. According to Boris Smus [2], using layered canvas
will yield a better performance as opposed to using a single
canvas. From this research, none of the game engines is using
multiple canvas elements as their feature. Therefore, this
research proposes a new approach in creating a game engine
which will add support to multiple canvas elements feature.

II. THEORETICAL FOUNDATION
A. Game Engine

A game engine, by definition, is a core set of technologies
combined into a single software package to accelerate game
development [3]. Game engines let game developers to have
more time to develop the game components rather than the
technical matter, as it provides the technical abstraction. Game
engines can be used in a form of included libraries or a stand-
alone editor application.

An example of a stand-alone game engine which has its
own editor is the Unity game engine. Unity is able to create
both 2D and 3D games and has wide access to many format
types of assets as it support models with the .3ds (3DS Max),
.fbx (Autodesk), and .blend (Blender) extensions, making

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

58

games created with Unity even quicker because developers do
not have much to deal with model file formats [4].

B. Physic Collision Detection
Collision detection is one of the most basic requirements in

game development, especially in computed physic
environment [5]. It checks if an object, 2D or 3D, is touching
or overlapping with another one or more objects. This is
important because when the game is simulating real life‘s
physics, objects that are bumping with each other are definitely
respond with a collision reaction, whether it is moving in
opposite direction or exploding. Therefore, collision checking
is a basic feature for game developing.

The importance of collision detection in game development
does not stop there. Even for game which runs at the minimum
of 30 frames per second, the collision detection also has to be
run thirty times per second in order to create a real time
animation. And so, an efficient and accurate algorithm for
collision detection is needed for developers so processor power
is not used up for detection collision only.

There exist several collision detection algorithms, each
with their advantages and weaknesses. Note that this research
will only limit its discussion on two-dimensional collision
detection algorithms. Moreover, it will only discuss algorithms
which are used inside the research‘s game engine.

The easiest algorithm to detect collision is by using radius.
This algorithm treats all tested object as a circle. The algorithm
basically checks the objects’ position and calculate the distance
between the two. The algorithm then compare the distance with
the combined objects’ collision radius. A collision happened
when the distance is equal or less than the combined radius.

Another type of collision detection algorithm is detection
by using the bounding box. Two object is colliding when their
bounding box are overlapping. The idea of this algorithm is
that calculating collision using box-shaped is easier than using
complex shapes like polygons or stars. This algorithm is
divided further into two parts: the Axis-Align Bounding Box
(AABB) and the Oriented Bounding Box (OBB) [6,7]. These
two algorithms are similar in term of bounding box calculation,
but works mathematically different.

C. <canvas> element

<canvas> element is a new features of HTML5. It enables
web browsers to dynamically draw 2D images with procedural
method [8]. JavaScript is used to script the generated graphic
(i.e. drawing a rectangle or sphere, or draw a bitmap image).
Apple was the first who introduced the canvas functionality,
but the use is limited only for OSX‘s WebKit. Later, other
browsers like Gecko browsers and Opera also implement it on
theirs. Not long after that, WHATWG (Web Hypertext
Application Technology Working Group) make the canvas as
a standard for HTML5 [8]. Since <canvas> implements the
rasterized procedural method, when an update happened inside
the canvas (e.g. drawing the next animation frame), the whole
canvas has to be cleared and the new shapes and images are re-
drawn. This differs significantly compared to drawing with
SVG (Scalable Vector Graphic), another new API (Application
program interface) for drawing in HTML5. SVGs are vector-

based image, therefore it consumes less memory and the raw
data can be saved inside the DOM. When an update happened,
only the data has to be changed and the browser will generate
the new images automatically.

D. <audio> Element
<audio> element enables web browsers to play music files,

synthesize sound, and generate/process speech natively without
any need for external libraries and dependencies [9].
Previously, when a website‘s owner want to put audio (or
video) embedded inside their site, they have to use external
plug-in such as Adobe Flash in order for their multimedia files
works on client‘s web browser. With HTML5‘s <audio>
element, browsers can natively play music and songs, provided
that the browser support the sound‘s file format.

III. PROBLEM ANALYSIS

Developing a game requires a lot of resources and
preparation. In order to make one, developers have to plan the
gameplay, the design, the characters. Also, they have to choose
the suitable technology with the targeted game platform and
market. It is going to take longer time if they still need to learn
about new technology (in case they develop the game in new
platform) and even longer if they code the game on low level
programming layer. More time will be allocated for debugging
and testing purposes.

In order to deal with those problems, developers commonly
use game engines for creating games. It enables them to create
games with shorter time, because it gives an additional
programming layer of technology abstraction. This additional
layer provides ease for the developers because they do not have
to code in low level programming language. Some basic
functionalities which had to be made manually by developers
also sometimes provided by game engines, such as collision
detection, physic engine, embedded audio engine, and several
more.

The mentioned problems above become more visible for
the HTML5 technology because of two things. First, by the
time this paper is written, HTML5 is still an evolving
technology. The HTML5 specification is still a draft and
maintained daily by W3C. Therefore, it‘s hard to create an
HTML5 website that‘s fully compatible with browsers that
support old version of HTML5 [10]. Second, browsers have
their own implementation of HTML5, mainly because of the
evolving specification. This creates a separated website
implementation for different browsers. An example of this is
the different web audio API developed by Google and
Mozilla. For those reasons, game engines have been a feasible
solution for creating games in shorter time, since developers do
not have to worry about the steep learning curve and they can
use the given additional functionalities. Developers can choose
from a wide range of choices of game engines, differs on what
platform they support, on how difficult to use the engine, on
what features can the engine support, and on what kind of
game that the engine can produce.

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

59

A. Existing Solutions

As for HTML5 game engines, there are already a lot of
them exist in the market, starting from the free engines to the
paid ones. Each of them has their own features, advantage,
difficulties, and drawbacks. There are some engines which
emphasize on their lightweight size, such as lycheeJS and
Crafty, while others emphasize on the performance, such as
Playcraft Engine and Pulse [2]. There is also HTML5 engines
that already uses GUI for the editor, such as Construct 2.

However, as far as the author‘s research, none of these
engine support multiple canvas elements, even though using
multiple canvas element have several advantages. According to
an article in.html5rocks.com, <canvas> element‘s performance
can be improved by utilizing several canvases, overlaid on
each other [3]. Another advantage is developers can specify
canvases‘ position according to their needs and favor

The existing solutions which this paper will describe are
limited to free HTML5 game engines. Game engines that are
used to create specific game genres (RPG, isometric, classic-
style) are also excluded.

A.1. Crafty

Crafty is a free HTML game engine that utilize <canvas>
element and/or DOM to render the entities‘ graphic. Similar to
how JavaScript handles event, Crafty also use event binding to
update the entities. Furthermore, it support custom events that
can be triggered using the function Crafty.trigger() that will
announce the custom event and trigger all entities that has been
bound with that specific event. The uniqueness of this engine is
that it does not use the usual inheritance concept for the
entities. Instead, it uses the multiple inheritance or trait
concepts [11]. To put it roughly, each object in Crafty can get
specific traits, depending on what components given to the
object on initialization. So the code:

Crafty.e("2D, DOM, Text")

creates an entity that have the 2D, DOM, and Text
components. Programmers can also create custom components
using the Crafty.c() function.

In order for the engine to recognize the drawing canvas,
programmers can do it two ways. First, by letting the engine to
create the canvas element, automatically by using the function
Crafty.init(). Second, by specifying an existing canvas with an
ID #cr-stage using the function Crafty.viewport.init(). The
major disadvantage of this engine is that it requires the
programmers to understand significant knowledge of
JavaScript (about the event binding and other things) before
they can use all of this engine‘s features

A.2. lycheeJS

lycheeJS is another HTML5 game engine, made by
Christoph Martens. It has a systematic folder structure for the
game assets and resources. This is required because lycheeJS
uses the folder position to determine the namespace and class
name. The game engine package also comes with a game
template that‘s ready to be edited, including the index.html file.
lycheeJS also provide an interesting feature for exporting the
game. Using the lycheeJS-ADK (App Development Kit), a

toolchain for this game engine, developers can export their
game to applications that can be natively ran on Linux
Ubuntu/Fedora platform. Previously, the ADK also support
Windows and OSX platforms, but it‘s outdated because of
incompatible libraries and misconfigured gcc compiler [12].

The main drawback of lycheeJS is the steep learning curve.
This engine requires the programmers to understand the
concept of prototype in Javascript. Another drawback is that it
has little extensibility, because all of the resources and folders
are already provided. This also disables the engine for
retrieving external resources (e.g. from other site).

A.3. gameQuery

gameQuery is an HTML game engine that uses jQuery as
the base. The main feature of this engine is the DOM
manipulation. So instead of using the <canvas> element, it uses
DOM and CSS as the image manipulator and renderer. This
inevitably broaden the browser‘s support compared to
HTML5‘s canvas element, because DOM technology was
invented before <canvas> element. Also, it supports tile
mapping, box collision detection, and callback/function
registration for periodic calls. This periodic callbacks is what
updates the whole game. For example, to register the updating
function, this function is used:
$.playground().registerCallback(function()
{/*Updating code*/})

gameQuery‘s weakness is that it‘s dependant to other
Javascript library, which is jQuery, so the file size of the
engine is sacrificed for rich features that jQuery can give.

A.4. Construct 2

Construct 2 is an HTML5 game engine made by Scirra.
There are three versions of Construct 2 available for
developers; free edition, which have a lot of limitation, but
good enough to create a simple game, the personal edition,
which is targeted to indie game developers, and the business
edition, which is mainly used by for-profit game organizations.

Construct 2 has a distinguished quality compared to other
HTML game engines: developers do not have to code to create
games. Some coding logics still exists, but in a form of click-
and-drag. Sprites and entities can be drag-and-dropped to the
stage, called layout, while the game logic is put on event sheet.
The basic component of display is called a sprite object, and
behaviors can be added to supported objects, sprite included.
This behavior objects can be defined to set common game
functionalities for specific objects. An easy example of this is
the physic behavior. Sprites that have the physic behavior will
automatically move downward, as if it‘s affected by gravity,
and others that don‘t implement it will not be affected.

Construct 2 also supports AJAX request, collision
detection, multiple animations, path finding and AI (from
behavior), and some webGL effects. Using the behavior-
concept for objects, Construct 2 enables an wide open
extensibility support for custom objects and behavior. This
engine can also export the game to platforms other than web
browsers, such as Windows 8, Windows Phone 8, iOS, and
Android. Apart from the rich features of Construct 2, it still has
several disadvantages. Since the editor is GUI-based, it has

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

60

quite large installer, more than 100 MB. Developers also have
to pay quite sum of money for creating game without
limitation. The editor is also not cross platform.

A.5. Traffic Cone

Traffic Cone is a HTML5 game engine made by Joseph
Mordetsky [13]. It also utilize two HTML5 <canvas> elements
in order for the engine to work. It supports sprite animations,
tile-based world support, tile mapping, intelligent draw
routines, and basic support for isometric path finding, AI, and
collision detection. Additionally, Traffic Cone can easily create
isometric display using specified images. Using the statement:

new GameWorld(250, 250, 73, 73,

GAME_WORLD_STYLE_ISOMETRIC)

it will create a GameWorld object that defaults to isometric
style of drawing. It has several constants that can be used to
draw isometric world according to developer‘s need, for
example GAME_WORLD_CELL_UNDERLAY for floor tiles
that will be drawn under character sprites, and
GAME_WORLD_CELL_OVERLAY for pillar/wall which
will be drawn over the character sprites.

Another feature of Traffic Cone is the composite sprite.
Composite sprite is “a sprite that instead of being made of a
single sprite sheet is instead made of multiple images”. It is
useful when the game has a collection system, where different
collections will be displayed differently on the stage. It comes
with two types of composite sprites, the simple and complex
one. The simple composite sprite means that the sub-sprite
positions are all the same, so the engine doesn‘t have to deal
with image‘s offset. While the complex composite sprite takes
offsets, width, height of the image for determining the frames
of the sub-sprite.

The drawback of Traffic Cone engine is that there‘s not
much resources to learn how to use this engine. Not even the
official website has documentation for this engine, although
there are some examples that can be followed.

B. Proposed Solution
Judging from the existing game engines, only Traffic Cone

that uses two <canvas> elements, while other engines only use
one or none (but instead use DOM). When used carefully,
multiple canvas could create a significant performance gain
compared to using only a single <canvas> [14]. The concept is
similarly used in Traffic Cone, when there are more than one
<canvas>, the engine can determine which <canvas> should be
updated and which one does not. This technique can be
expanded more, by determining which part of the canvas that
should be cleared before being redrawn.

When using a single <canvas>, the engine definitely have
to clear the whole canvas before redrawing it. Although the
performance cost is quite small, this cost will be accumulated
quickly because typically, images is redrawn 30-60 times per
second. This will impact more on computers with low-end
hardware. Therefore, managing which <canvas> and
specifying part that should be cleared will definitely give a
much better performance.

This research will propose a solution for the HTML game
engine problem, a new game engine called AethelmE, which
support multiple <canvas> elements. This engine will be
developed using JavaScript programming language.

IV. DESIGN AND DEVELOPMENT
Figure 1 shows the main classes that forms the game

engine. The main class of the engine is the AethelmE class. In
order to minimize the chance of mistyping the engine’s name, a
shorthand class is also provided, which can be accessed by
using the AE class. With this shorthand class, developers can
create a new instance of AethelmE by using either new
AethelmE() or new AE().

Fig. 1. Main Class Diagram

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

61

Note that all custom engine classes are using the word AE
in front of the class name. This is done to prevent the class
name clash with Javascript’s reserved words, existing class
name, and global variable names. This also applies to other
engine’s class name to maintain consistency and also enable
the engine to be developed further without having to worry
about global namespace.

Fig. 2. DisplayList Class Diagram

 Figure 2 shows the relationship between classes that handle
rendering, with AE.DisplayList class as the center. As seen in
the diagram, AE.DisplayList aggregates and stores two classes,
which are AE.Stage and AE.Object2D. Also, this class does
not only aggregate, but also pairs them so that each 2D object
know on which <canvas> element it should render to.

A. AethelmE Class
This class is the main class of the game engine. Each

instance this class saves all resource managers. It also saves a
single instance of AE.DisplayList. There are also two functions
which deal with error happening in engine. These two
functions are the error and warning handlers. When the
function AethelmE.error() is called, then the errorHandler
function will also be called, with an instance of AE.Error is
passed as the argument. Accordingly, when the function
AethelmE.warn() is called, then the warningHandler function
will be called with an instance of AE.Error is passed as the
argument. AethelmE provides a default behavior for both
errorHandler and warningHandler. Figure 3 And 4 show this
behavior.

Fig. 3. errorHandler Default Behavior Activity Diagram

Fig. 4. waningHandler Default Behavior Activity Diagram

This class also provide the error() and warn() function,
which developers can use to generate an error in-game. As a
matter of fact, this two functions are only a function wrapper
which create an instance of AE.Error, and then passed it to the
corresponding handler. There are also log() function which can
prints out message, as defined by logHandler function.

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

62

B. AE.Error Class
This class is a wrapper class which contains information

when an error happened inside the engine. This error includes
invalid argument type, underflow or overflow value, void
operations, and accessing invalid asset. This class is mainly
used inside AethelmE class, especially for the warningHandler
and errorHandler functions, in which this class is passed as
argument.

C. AE.Loader Class
The class AE.Loader is a utility class which gives ease for

developers to download external resources, such as images,
sounds, and text files. When this class first initialized, it is
passed several arguments at the same time. First is the URL of
the resource. The next argument is the asset‘s name. This
name will be used to differentiate assets with another. The
next two arguments are functions, which will be called when
something happened with the resource loading. As the name
implies, onComplete function will be called when the asset is
fully downloaded, while onError function will be called when
there‘s an error while the data is downloading. The next
argument, target, is pretty tricky, as it deals with how function
in Javascript works. target is the object that is bound to both
onComplete and onError function.

The next argument is the engine, which determine which
AethelmE engine the asset will be stored to. If it is not
specified, the first created engine will be used. This argument
is especially important because there can be multiple
AethelmE engines exist on a single page (although it is not
necessary), so AE.Loader has to know on which engine the
downloaded data will be stored. Also, there‘s a single method
exist in this class, which is the load() function. When this
function is called, AE.Loader will start loading the resource.
This step can be skipped if the static attribute autoLoad is true
(which is the default value). While this attribute is true, the
asset will be automatically loaded as soon as the AE.Loader
object is initialized and instantiated.

D. AE.MultiLoader Class
The class AE.MultiLoader is a utility class, similar to

AE.Loader, but is able to load multiple resources at once.
AE.MultiLoader aggregates multiple AE.Loader objects to in
order to load multiple assets. When an object of
AE.MultiLoader is instantiated, it received several arguments
at the same time and they are similar to AE.Loader‘s
arguments. The first argument, urls, is an array that contains
strings of the assets‘ URL. The second argument, names, is
also an array that contains strings which will be paired to the
asset‘s URL when it‘s done loading. The next three
arguments, onAllComplete, onError, and onEachComplete,
are functions which will be called when the matching event
happened. The final argument, target, is the exact same as the
target argument on AE.Loader; It will be bound on the three
functions (onAllComplete, onError, and onEachComplete) to
define the object that the keyword this will be referring to.

E. AE.ImageManager Class

The class AE.ImageManager stores images that are used
inside the game engine. The class itself does not need any
argument to be initialized. The image is stored when the

function add() is called. This function requires several
arguments to be executed. First is the name, which is a string
that differentiates the stored images. The next argument is the
url, which is a string that defines the image‘s address. The
next two arguments, onComplete and onError, is the callback
functions which will be called after the corresponding event
happened. The way function load works is by using the
existing event listener inside the Image class. It handles when
the images is already downloaded and when there‘s error
when loading it. Using this listener, AE.ImageManager can
use the past functions from the argument to the appropriate
event.

The downloaded image is stored on the images attribute.
That it is not an array, but instead an empty Javascript object.
The image is stored in a pair of key-value format, which uses
the name argument as the key. A problem could arise when
the name is already taken and paired with another Image. This
is where the isStrict attribute is used. isStrict is a static
attribute, which defines the behavior when there is a name
clash. The default value is false, which will make the engine
create a warning when there‘s a clash on the key.

F. AE.AssetManager Class

The class AE.AssetManager stores all other files which
cannot be supported by AethelmE. This includes text files,
JSON, and XML. Similar with other two manager classes, the
assets attribute saves all assets in a key-value pair, with the
name is stored as the key and the downloaded data is stored as
the value. AE.AssetManager also has the static isStrict
attribute, which defines whether it will create an error or a
warning when there is a name clash inside the assets attribute.
It also provide the add(), get(), and remove() function.

In order to download the data with unknown format,
AE.AssetManager uses the Javascript‘s AJAX technology.
AJAX uses the XMLHttpRequest class to download resources
asynchronously. This data can be retrieved in a text format or
binary format, depending on developer‘s need. For
AE.AssetManager, the XMLHttpRequest uses only POST
request, as it has larger data length limit compared to GET
requests.

G. AE.SoundManager Class

This class stores any audio files that is downloaded and
used by the engine. The class constructor has no argument,
and it only initialize the sounds attribute. AE.SoundManager
stores the audio file in a key-value pair inside the sounds
attribute. When the add() function is called, it requires the
name attribute, which it will be used for the key, and the
downloaded file from the url attribute will be stored as the
value.

The static attribute isStrict is also present in this class to
prevent the engine to replace stored audio with the same
name. When the value is false, the engine will create warning
when a the name already existed, and will still replace the
audio file. When the value is true, it will generate an error and
depending on how the error handler work, it will or will not
replace the audio file. AE.SoundManager class also provide
function to retrieve the audio data using get() function, and to
delete and free the memory for unneeded audio data using the

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

63

remove() function. The remove() function returns a boolean
value, indicating whether the deletion is successful or not.

H. AE.Sound Class

The AE.Sound class acts as a wrapper class for the
HTML5‘s native Audio class. As seen from Figure 1, it has
the audio attribute, which will save an instance of Audio class.
The reason Audio class has to be bound inside another class is
because it has no detection support whether the audio has
completed the download completely. It can only detect
streaming status, which can stop downloading before the data
is fully downloaded. This is unfavorable for audio in games,
because it will create choppy sounds when users are playing
the game, especially those who have slow internet connection,
and will definitely impact the gaming experience. In order to
circumvent this problem, the AE.Sound class make use of the
existing Audio‘s event handlers to detect whether the data has
downloaded completely.

Figure 5 shows AE.Sound class‘ constructor. AE.Sound
class uses two existing event handler from the native Audio
class. They are the progress event and the canPlayThrough
event. The progress event is called when the Audio is in the
process of downloading, while the canPlayThrough is called
when the browser thinks that the downloaded data is long
enough (but not yet complete) for the browser to play the
audio. Using these two events, AE.Sound create a custom
loading function which can detect when the audio has
completely downloaded.

Fig. 5. AE.Sound constructor Activity Diagram

As seen on Figure 6, this loading function is dependent to
the native Audio event. As the event continuously happening,
the function will be executed again and again, until the audio
is downloaded completely. In general, there are two main
conditional statement inside the function. The first one checks
whether the audio‘s metadata has already loaded. The Audio
class loads the audio‘s information first before it actually
stream the audio data. This information includes audio‘s title,
duration, artist, album, genre, etc

The second statements checks if the streamed data already
reached the end of the audio file, by comparing the end time
of the streamed data with the total duration. If it has not reach
the end, it will set the current time to the end of the streamed

data. This is needed because Audio‘s implementation are
different across browsers. The browser may continue the
streaming even if the current time is still at point zero, but
there are browsers which will stop the stream when the
downloaded data is long enough for the user to hear. It will
continue streaming when the current time is getting closer to
the end of buffered data. So, in order to ensure all browsers
behave the same, this function will actively set the current
time to the end so all browsers will continue the streaming. If
the data is fully downloaded, the current time will be reset to
point zero, and the function will call the passed complete
function. Then, the function will end its execution. AE.Sound
class also support several functions for audio playback, using
the play(), pause(), and stop() functions.

.

Fig. 6. AE.Sound onLoading function

I. AE.DisplayList Class

The AE.DisplayList class is the center class of sprites and
stages, as it acts as the storage, manipulator, and rendering of
all 2D objects in AethelmE engine. The class‘ constructor has
no argument, because it only initialize its attributes, stages and
objects. These two attributes stores all references to stages and
objects that are initialized and used inside a single instance of
AethelmE. As the names imply, the stages object stores all
references to existing stages and canvas elements, while
objects object stores all references to instantiated 2D objects.
The way that these two objects store the references is unique,
because both of them uses key-value pair scheme. Since
JavaScript cannot use an object instance as an object‘s key,
both of the objects uses the stage‘s name as the key.

The AE.DisplayList class also provides functions for
manipulating stages and the objects inside it. Most of these
functions are automatically called by other classes, so
developers doesn't have to bother with AethelmE‘s object
structure. The most basic one is the addStage() function,
which will add the reference in the stages attribute and create
an empty array in objects with the stage as the key.

J. AE.Vec2 Class
AE.Vec2 class is a utility class which saves two numeric

values and can be manipulated as a two-dimensional vector.

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

64

This class only has a single attribute, which is the value array.
It only saves two numeric values, with zero as the default
values. This class is mainly used for AE.Object2D, AE.Text,
and AE.Sprite class to define values that come in pairs. It is
also frequently used for AE.Sprite‘s collision detection, with
several vector calculation functions that helps with vector
projection.

The AE.Vec2 class also provide several functions which is
commonly used for vector calculations. The first function is
the length() function, which returns the vector length. This
class also provide the sqrLength() function which, as the name
imply, return the squared length of the vector. Developer can
(and encouraged to) use the sqrLength() function when the
accurate vector length is not needed. For vector arithmetic
calculations, this class also provides several functions with
two variants, the method ones and the static ones.

K. AE.Stage Class
This is the class that contains all attributes and functions

related to canvas element, updating, and rendering functions.
While the one that actually renders is the AE.Object2D class
and the one that call its render() function is the
AE.DisplayList, AE.Stage is the one responsible of when to
render the stage itself. Thus, AE.Stage is the one that calls the
AE.DisplayList‘s renderStage() function. For rendering
purposes, it has the private attribute updaterID, which saves
the callback ID for the current rendering function call. It also
has the lastTime and elapsedTime attribute.

As seen in Figure 7, AE.Stage constructor provides two
ways to set the canvas attribute. The normal way is to pass the
canvas element itself. For developer‘s ease, this argument also
accept a string argument, which is the ID name of the canvas
element, and the engine will automatically retrieve the
element with the specified ID.

Fig.7. AE.Stage Constructor Activity Diagram

AE.Stage also has the input attribute, which is an instance
of AE.Input. For updating purposes, it also has the updater and
needToRender attributes.The needToRender attribute is one of
the most important feature of AE.Stage as this flag attribute is
the one that determine whether the stage has to be re-rendered
or not. This attribute has a default value of false, which means
that the stage will not be rendered, and the last rendered image

will stay as it is. This value will only change to true under
certain conditions, such as a new object is added, an object is
removed from the stage, or any of the object‘s visual attribute
is updated. With the existence of this attribute, the stage can
be rendered as needed so it will not consume as much
processor resource as usual.

There‘s also a static Boolean attribute called autoStart
which determine whether the stage is automatically started
when an AE.Stage instance is created. Its default value is true.
When it‘s set to false, all newly instantiated AE.Stage
instances will not be started, and the start() function has to be
called manually by developers. For manipulating the stage‘s
workflow, this class provide two functions, the start() and
stop() functions.

L. AE.Input Class
AE.Input class is a utility class that manage user input.

Even if this class is created for AethelmE engine, it actually
can support other HTML elements to a certain degree. This
fact can be seen on AE.Input‘s constructor, as it requires
oneargument, which is a DOMElement. As long as the
specified element can receive user input, specifically mouse
and keyboard input, the element can be attached with this
class. Instances of AE.Stage will automatically have an
instance of AE.Input inside it which is attached to the canvas
element, so developers can use it automatically.

This class has several attributes, namely the target which
save the attached DOM element, and both onMouseEvent and
onKeyboardEvent which save the developer‘s custom callback
function when mouse and keyboard events happened. This
class uses Javascript‘s addEventListener() function to attach
the callback functions to the elements. When the saved
callback function in onMouseEvent and onKeyboardEvent is
called, these functions will receive several arguments,
depending on the event types. To save the processor power,
these input events will not be active by default. In order for
the element to receive user input, is has to be enabled using
the enableMouseEvent() for mouse events and
enableKeyboardEvent() for keyboard events.

M. AE.Object2D Class
AE.Object2D class is the parent class of all objects that are

rendered and drawn on the stage. The two classes that inherit
from AE.Object2D are AE.Text which define a text on the
canvas and AE.Sprite which define a graphical render using
images. Inside this class, its save the engine‘s display list
reference in displayList and also the stage reference in the
stage attribute. It saves the engine‘s display list because of the
addToStage() and removeFromStage() functions are the
wrapper functions of AE.DisplayList‘s addObjectToStage()
and removeObjectFromStage() respectively. As such, this
class will need to know the active display list reference. It also
need to know the stage reference where the object will be
rendered to, because it will need the canvas 2D context in
order for the object is rendered, and the stage is the one who
keep the canvas element reference.

N. AE.Text Class
 AE.Text class is a children class that inherits from

AE.Object2D. It define a text on a canvas. The written text

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

65

will be the string from the string attribute. The align attribute
is used to define the text. The font attribute is used for
determining the text‘s font and style. Its type is string because
it uses CSS‘s rule to determine the font. For example, to create
a serif font with the size of 12 pixels, the font attribute will
contain the string “12px serif”. It also applies to common
styles, such as bold and italic. To create a bold text with
previous values, the font attribute will contain the string “bold
12px serif”. The color attribute contain string that defines the
text‘s color. It can contain the color’s name or can also be an
RGB code in an rgb() function or hexadecimal value. The
baseline attribute is useful for determining the vertical anchor
point where AE.Object2D‘s position attribute points to. The
common values for this attribute are top, middle, and bottom.

This class also provides the static attribute default, which
consist of the default values of other attributes. When the class
AE.Text is instantiated, it will initialize the attribute values
with the ones inside the default object. This object is useful for
developers who want to have a common font and style for all
rendered text, without any need to change the attribute one by
one. This class also have the render() function, which take a
canvas context as the argument. When this function is called,
it will render itself on the provided canvas context.

O. AE.Sprite Class
AE.Sprite is the basic class for displaying images on

canvas. It inherits from AE.Object2D class. It uses the image
that is saved inside AE.ImageManager. When AE.Sprite is
instantiated, it requires an argument, the imageName which is
the image‘s name inside AE.ImageManager. It also has an
optional argument, which is the engine, which define on
which AethelmE engine the image will be taken from and the
sprite will be saved to. For sprite manipulating, there are
several attributes exist inside this class, such as the angle
which define the sprite‘s rotation angle from the center.
Unlike the mathematical angle, this engine‘s angle zero is
pointed to Y-positive-axis, or number 12 on a clock. When it‘s
incremented, it will rotate clockwise just as a clock would.

AE.Sprite also provides attributes which automates
common animations. The animationMode attribute will
contain an animation constant which defines the animation
type, while the currentAnimationMode attribute defines the
current active animation. There are also animationFrames
which is an instance of AE.Vec2 and defines from which
frame to which frame the animation will play. For collision
detection, AE.Sprite uses several methods subsequently. It
support distance-based collision and object bounding box (or
Separating Axis Theorem) collision. These functions are saved
inside the static array attribute collisionFunction.

To check the collision detection, AE.Sprite has the
isHitWith() function, which takes another instance of
AE.Sprite for the argument. This function does the collision
detection by calling saved collision functions inside the static
collisionFunction iteratively. First, it will call the distance-
based collision function. When the result is false, the function
returns the value false, since there‘s no need to continue the
detection (objects that are far apart logically wouldn‘t collide
at any sprite‘s part). If the returned value is true, then the
detection continues to the next algorithm, which is the SAT.

Then, the final returned value would be whatever value
returned from this last function.

AE.Sprite also has the destroy() function. It will remove
the sprite from the stage visually and programmatically. It
means that not only the sprite will not be rendered, but it also
will be removed from the array inside the active
AE.DisplayList object.

P. AE.AnimationMode Class
AE.AnimationMode is a utility class that contains all

constants for AE.Sprite‘s animation attributes, especially
animationMode and currentAnimationMode. When the value
is set to animationMode, it represent the sprite‘s whole
animation. It is different when the value is set to
currentAnimationMode, because it only represents the current
flow of animation. The constant NONE means that there‘s no
active animation, while the value ONCE means the animation
only run from the start to end and the animation stops. The
constant LOOP makes the animation loops infinitely when the
frame reached the end. The constant REVERSE means the
animation is running backward (from end to start). Finally, the
constant PING_PONG makes the animation loops forward
and backward continuously.

V. TESTING AND IMPLEMENTATION
This research created two tests. The first is the engine‘s unit

testing. It means that the test will make sure the classes‘
functionalities are working properly. The second test is to
compare a similar game between multiple free HTML5 game
engines and AethelmE. The aspect compared are the CPU and
GPU usage. The target of this second testing is to compare the
games performance on engines with single drawing viewport
and engines which support multiple drawing viewports.

A. Unit Testing

AethelmE engine works on most major internet browsers.
Tested using Google Chrome, Mozilla Firefox, Opera, and
Internet Explorer 9, AethelmE supports error handling,
external asset loading (using AE.Loader and AE.MultiLoader
class), a vector wrapper class, image and text rendering on
HTML5 <canvas> element, and also detecting both mouse and
keyboard input using AE.Input class. The aforementioned
features are fully compatible with all of the tested browsers.

The problem lies on the AE.Sound class, as the class is not
properly working on several browsers. There are two main
problems of this class. First, is because this class cannot detect
audio format compatibility automatically. This problem can be
seen on Firefox‘s sound unit testing. As seen on the Figure 8,
Mozilla Firefox can properly play audio with supported format
(signified from the green SUCCESS result), but the test for
detecting incompatible format failed, or did not work to be
precise. Normally, when the test failed, the result box‘s color
should change to red and the word FAILED showed, but this
is not the case with the above test. The default text inside the
box was still shown, and there was no change at all, even
when it was left after sometime.

When the test is conducted more in-depth using Firefox‘s
debugging plug-in, Firebug, it turned out that when
incompatible audio format is detected internally, the browser

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

66

is automatically set for not downloading the file. This explains
why the test freeze in the middle, because the end callback
function is never called and the result() function was never
executed, making the test hanged without any precise result.
Since this problem is caused by the browser implementation,
there‘s not much that can be done for AethelmE, except to
modify the game engine to match how the browser behave.

Fig.8. Sound Unit Testing on Mozilla Firefox

The second problem of AE.Sound class is that it does not
work at all on both Opera and Internet Explorer (e.g. no audio
is played at all). As seen on Figure 9 and Figure 10, none of
the audio unit testing are working on Opera and Internet
Explorer 9, as there are no SUCCESS or FAILED message
inside the result box. This no-result occurrence can only mean
that (similar to the previous problem) the end callback is not
called at all, making the result() function is not executed.

Fig.9. Sound Unit Testing on Opera

Fig.10. Sound Unit Testing on Internet Explorer

B. Performance Comparison Testing
For testing the performance of multiple HTML5 game

engines, this research focused more on comparing the
performance on refreshing a single drawing viewport and
refreshing two or more drawing viewports. The test was using
ASUS Notebook UL80VT Series with the following
specifications: 64-bit Windows 7 Home Premium, Intel®
Core™ 2 Duo Processor SU7300 @1.3 GHz, NVIDIA
GeForce G210M and 4.00 GB RAM

The game specification for this test is described as follows:
• A sprite which have four-frames looping walking

animation. For engines which support multiple drawing
viewports, this sprite will be put on the foremost viewport.

• A two-part background image which scrolls only to the
right. For engines which support multiple drawing
viewports, these background sprites will be put on the
rearmost viewport.

• It should be able to retrieve user inputs.
• When right arrow is pressed, the walking sprite moves to

the right. When it is already at the right edge of the
viewport, scroll the background to the right.

• When the left arrow is presses, the walking sprite moves to
the left. When it is already at the left edge of the viewport,
do nothing.

• Record the CPU and GPU performance while the game is
running in several states: idle, moving (walk), and
scrolling background.

While the game seems pretty simple, this test can check
how significant multiple drawing elements can impact the
processor and graphic card‘s performance, because there are
elements that should be updated every frame and there are
some that do not need to be updated that frequently. This
performance measuring is also dependant to browser‘s
implementation of image rendering, both in DOM and
<canvas> element, as different browsers can have their own
way of rendering bitmaps on the screen.

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

67

Before started the testing (when the system on standby):
10% CPU usage and 0% GPU usage. Table 1 shows the result
of the performance testing with three different states.

TABLE 1. Performance Testing Result

 Idle Walk Scroll

lycheeJS CPU 33% 35% 35%
GPU 28% 31% 28%

gameQuery CPU 15% 25% 52%
GPU 11% 25% 30%

Traffic Cone CPU 45% 48% 58%
GPU 33% 34% 30%

Crafty CPU 34% 37% 77%
GPU 45% 47% 36%

Construct 2 CPU 30% 35% 36%
GPU 50% 35% 35%

AethelmE CPU 31% 36% 34%
GPU 29% 30% 32%

The Figure 11 shows the comparison of the CPU usage

between the tested HTML5 game engines. Higher bar means
more processor usage is observed for the specific engine,
which is not good. AethelmE is able to have stabilized CPU
performance when tested in multiple states, on par with
LycheeJS and Construct 2. gameQuery has the highest
performance when the player is idle and walking (means that
the background is still static), but become much worse when
the background is scrolling.

0

20

40

60

80

100

Idle Walk Scroll

LycheeJS

gameQuery

Traffic	Cone

Crafty

Construct	2

AethelmE

Fig.11. CPU Usage Chart

Traffic Cone has the worst CPU performance in average,
even though the engine also uses multiple <canvas> elements.
Crafty has the same problem with gameQuery, whose
performance worsens when the background is scrolling, and it
is also the one that uses up the most CPU usage among the
engines. Based on this test, it seems that multiple drawing
elements are not the main aspect for having a performance
gain compared to single drawing element. It might still help,
but the result is not that significant.

Figure 12 shows the comparison of the GPU usage
between the tested HTML5 game engines. Higher bar means
more graphic card usage is observed for the specific engine.
Please note that this result cannot be fully used to compare
how good the engines are, because the GPU usage are

dependant to the browser‘s rendering implementation. This
graph only acts as a complement result for CPU usage
comparison.

0

10

20

30

40

50

60

Idle Walk Scroll

LycheeJS

gameQuery

Traffic	Cone

Crafty

Construct	2

AethelmE

Fig.12. GPU Usage Chart

As seen from the figure, almost all engines use generally
the same amount of GPU usage, except for several cases.
Crafty uses the most GPU usage in average, while gameQuery
uses very little GPU calculation for idle state. Construct 2 has
the most irregular GPU usage for the idle state. When the
benchmarking game is started, Construct 2 uses only about
36% GPU usage, which is almost the same with other engines‘
usage. When the game is left for a while, the usage suddenly
increased up to 50% and became steady on this number. This
is not the case with the other two states, as it only has around
35% GPU usage.

VI. CONCLUSION

This research has successfully created a functional HTML5
game engine prototype which support for multiple canvas
elements, called AethelmE. This research also did a
performance comparison between several free HTML5 game
engines and AethelmE, using a benchmarking game. Judging
from the performance comparison result, it can be concluded
that multiple drawing viewports (e.g. multiple canvas
elements) does not have much significance in performance
gain, because engines with single drawing element can have
the same performance rate with engines with multiple ones.

REFERENCES
[1] T.N.Sharma, P.Bhardwaj and M.Bhardwaj. (2012, Sept.). Differences

between HTML and HTML5. International Journal of Computational
Engineering Research. [Online]. 2(5), pp. 1430-1437. Available:
http://www.ijceronline.com/papers/Vol2_issue5/AR02514301437.pdf

[2] B.Smus. (2011, Aug.). Improving HTML5 canvas performance. HTML5
Rocks. [Online]. Available: http://www.html5rocks.com/en/tutorials/
canvas/performance/

[3] J.Park, "Study of network game engine technology for distribute
processing," M.S. thesis, Dankook University, Yongin, South Korea,
2008.

[4] Unity. “Unity – Fast Facts”. http://unity3d.com/company/public-
relations/

Journal of Game, Game Art and Gamification
Vol. 01, No. 02, 2016

68

[5] M.Teschner, S.Kimmerle, B.Heidelberger, G.Zachmann, L.Raghupathi,
A.Fuhrmann, M.P.P.Cani, F.Faure, N.Magnenat-Thalmann, W.Strasser
and P.Volino. 2005. Collision detection for deformable objects.
Computer Graphics Forum [Online]. 24(1), pp. 61-81. Available:
https://hal.inria.fr/inria-00539916/document

[6] G.van den Bergen, “Efficient collision detection of complex deformable
models using AABB trees,” Journal of Graphics Tools, vol. 2, pp. 1-13,
1997.

[7] S.Gottschalk, M.C.Lin and D.Manocha, “OBB-tree: a hierarchical
structure for rapid interference detection,” Proceedings of SIGGRAPH,
vol. 96, pp. 171-180, 1996

[8] D.Geary, “Essentials,” in Core HTML5 Canvas – Graphics, Animation,
and Game Development, Crawfordsville, IN: Prentice Hall, 2012, pp 1-
7.

[9] S.Fulton and J.Fullon, “Working with Audio, in HTML5 Canvas”, 2nd
ed. Sebastopol, CA: O’Reilly, 2013, pp 381-387.

[10] E.Castro and B.Hyslop, “Introduction in HTML5 and CSS3”, 7th ed.,
2012, Berkeley, CA, Peachpit Press, 2012, pp xvi.

[11] Crafty, “Crafty - Creating your first Crafty game”, 2010, [Online].
Available: http://craftyjs.com/tutorial/bananabomber/create-a-game#
components

[12] C. Martens, “lycheeJS - Getting Started: Setup lycheeJS-ADK”,
[Online]. Available: http://martens.ms/lycheeJS/docs/guide-setup-
lycheeJS-ADK.html

[13] J. Mordetsky, “Trafficcone”, 2012, Available: http://github.com/j03m/
trafficcone

[14] IBM Developer Works, Available: https://www.ibm.com/developer
works/ library wa-canvashtml5layering/

