
 Journal of Game, Game Art and Gamification
Vol. 01, No. 01, 2016

1

Evaluation of Physics Frameworks for Building Web-
Based Games

Resa Yogya
Binus University International

Bina Nusantara University
Jakarta, Indonesia

Raymond Kosala
Binus University International

Bina Nusantara University
Jakarta, Indonesia

Abstract— Recently, WebGL technology has shown a lot of
potential for developing games. Since this technology is still
relatively new, there is still much potential in the game
development area that has not been explored yet. This paper
explores the development of a game engine made with WebGL
technology that integrates some physics frameworks for
developing web-based 2D or 3D games. Specifically, we
integrated three open source physics frameworks, which are
Bullet, Cannon, and JigLib, into a WebGL-based game engine.
We assessed these frameworks using some experiments, in terms
of their correctness or accuracy, performance, completeness and
compatibility. The results show that it is possible to integrate
open source physics frameworks into a WebGL-based game
engine, and Bullet is the best physics framework to be integrated
into a WebGL-based game engine.

Keywords—physics frameworks; webgl; game engine; browser
games

I. INTRODUCTION
The growth of the internet is very fast, and people can

access the internet through mobile phones easily nowadays.
The same thing goes for computer games that are played
through the internet. Browser games are the kinds of games
that people can play through their internet browsers [1]. One of
the most popular technologies that are used to develop browser
games is Adobe Flash, often just called Flash. Games
developed using Flash technology offer interactive gameplay
but the drawback is that the player has to install the web
browser plugin first before he or she can play the game.

In the recent years, physics-based casual games have often
got high ratings, such as Angry Birds [2] and Cut the Rope [3].
Physics are also used as one of the features in many games
recently, including the very popular Pokemon Go [4]. It is true
that using physics does not guarantee that the game will be
successful. However, by simply featuring physics, the
gameplay can be richer and more appealing to the users. Based
on this fact, it can be said that physics plays an important role
in games.

Also in recent years, a web rendering technology called
WebGL [5] was introduced. This technology is similar to
OpenGL, but it can run on internet browsers. The advantage of
using this technology is that people do not need to install the
plugin in the web browser to run the WebGL application,
which is very promising for deploying games on a website.
Furthermore, it is cross-platform so there will be no additional

work to port the game into the desired platform, for instance
the web browser.

The existence of a game engine is required to develop
games efficiently. Currently, there are several WebGL-based
game engines, for instance in [6]. WebGL-based game engines
can be developed using some already available frameworks, for
instance physics frameworks. However, not all of these physics
frameworks are suitable to be used for WebGL-based game
engines.

Therefore, the aim of this paper is to do an evaluation about
some existing physics frameworks that can be used to develop
a WebGL-based game engine. In this paper, we specifically
evaluate three physics frameworks: cannon.js, bullet.js, and
jiglib.js. We performed the following four types of experiments
to evaluate the physics frameworks. The first is to do
compatibility testing of each framework with the game engine.
The second is to test the correctness of box and sphere-shaped
rigid body physics. The third is to compare the completeness of
physics features. Finally, performance testing of each
framework in the actual application was conducted. A
prototype game engine and four test applications were created
to carry out the experiments. The game engine consisted of a
core engine, a rendering engine that uses WebGL, and physics
engine that uses the frameworks that will be tested. After the
test applications are loaded on the internet browsers, then test
cases can be carried out. For the experiments, we have
prepared several test cases that include performance testing,
compatibility testing, correctness testing, and completeness
observations. Finally, the test results of each physics
framework can be obtained and evaluated.

The rest of this paper is organized as follows. In the next
section, the relevant background and technologies related to
WebGL and game engines will be explained. Next, the design
of the game engine architecture, testing the application user
interface, and test cases are presented. Then the experiments
results and and evaluation are presented. Finally, the findings,
their implications and future research directions are discussed.

II. BACKGROUND

A. WebGL Technology
WebGL [5] is a cross-platform 3D graphics library for the

world-wide web that makes use of a HTML5 canvas element.
One major advantage of WebGL compared to other web
rendering technologies, such as Flash and Microsoft

 Journal of Game, Game Art and Gamification
Vol. 01, No. 01, 2016

2

Silverlight, is that WebGL is plug-in free, which allows the
user to run the application without having to install additional
software/plug-ins. The version 1.0 of this technology was
released on March 2011 [7] and currently version 2.0 of the
WebGL is still under development.

WebGL was developed by Khronos Group, the
organization that develops OpenGL. Therefore, there are many
similarities between OpenGL and WebGL. More specifically,
WebGL 1.0 is based on OpenGL for Embedded System 2.0
(OpenGL ES 2.0), which in turn is a stripped down version of
OpenGL 2.0 that allows OpenGL to run on embedded
platforms [7].

At the moment, most major internet browsers already
support WebGL [8]. From Figure 1 and Figure 2, the browser
support of WebGL has grown from around 45 percent in April
2012 to around 87 percent in July 2016. In April 2012, Mozilla
Firefox 4.0++, Opera 12 and Google Chrome already
supported WebGL by default. However in Safari, it was
disabled by default so the user had to enable it manually, and
Internet Explorer did not support WebGL. Some mobile users
could use WebGL but there may be slight incompatibility
issues due to their hardware capability. Now in July 2016, only
Opera Mini does not support WebGL.

Fig. 1 WebGL support by browsers in April 2012 (Source: caniuse.com)

Fig. 2 WebGL support by browsers in July 2016 (Source: caniuse.com)

B. Physics Frameworks
According to Gregory [9], a game engine is software that is

extensible and can be used as the foundation for many different
games without major modification. Some examples of game
engine are Unreal Engine [10], Construct 2 [11], Unity [12].

A physics engine is one of the components of a game
engine that is responsible for managing and handling all
physics-related functions. In general, a physics engine that is

used in a game engine is often adapted from a commercial
physics engine developed by the third party. Two examples of
popular commercial physics engines are NVIDIA PhysX [13]
and Havok [14]. The alternative would be to develop a physics
engine based on existing physics frameworks.

We differentiate between physics frameworks and physics
engines. A physics framework, the main focus of this research,
is a library that provides low level physics functions, while a
physics engine provides a higher level of interface to the user.
A physics engine or physics framework must include two main
functionalities: collision detection and collision response or
handling.

Up until this moment, there are two popular physics
theories, which are Newtonian physics and rigid bodies.
Newtonian physics is based on Newton’s laws of motion, while
rigid bodies assume that objects are solid and not deformable.
Rigid body physics has become popular because it greatly
simplifies the calculations required and gives acceptable
results.

Some advanced features of physics are ragdoll physics [15],
soft body dynamics, cloth physics, hair physics, fluid
dynamics, and water surface simulation. Ragdoll physics is
usually used for dead people animation where the bodies go
limp. Soft body dynamics is like rigid bodies dynamics but for
deformed objects. One of the popular soft body dynamics
implementations is ‘the spring’ in animating dead bodies’
rigidity and lack of flex [16].

Since WebGL API is written in JavaScript, theoretically all
frameworks that are JavaScript-based can be used as the
physics engine. For this research, the frameworks that will be
used as research objects are only the open source ones, so the
results can be analyzed further by examining their code
structure. There are a few JavaScript-based physics
frameworks out there, but for this research we only experiment
with three physics frameworks. Our criteria for choosing the
frameworks are the popularity among game developers and the
ability to model physics in 3D. The frameworks that are chosen
are the following.

The first one is Bullet [17], which was originally written in
C++ but recently there is third party software called
kripken/emscripten [18] that can port it into JavaScript. Bullet
is one of the well-known open source physics frameworks
among game developers, and is used in the film industry as
well. Nevertheless, its performance after being ported into
JavaScript is not fully known yet.

The second one is JigLibJS [19], which is another open
source physics framework that can be used for WebGL. It is
already ported into JavaScript format so there is no need to port
the code first. Based on the demo, this framework shows
decent results but this framework seems to be computationally
intensive.

The final one is Cannon.js [20], which was written from
scratch, and is claimed to be lightweight. There seems to be a
lack of documentation of this framework at the moment.
However, the demo shows its capability of handling ‘rigid
body’ physics. This framework is interesting because it claims

 Journal of Game, Game Art and Gamification
Vol. 01, No. 01, 2016

3

it is lightweight, which is a big plus from the development
aspect.

C. Physics for Rigid Body Collision
When two objects collide, those objects will spin and their

speed is changed. How big their speed is changed and how fast
they spin can be calculated through a physics formula,
specifically from an Impulse-Momentum formula. In this
paper, the physics engine will be created based on Impulse-
Momentum theory. More detail about this theory is described
below.

Impulse is a force that acts over a short period of time [21].
From this definition, we can write a formula: impulse is equal
to the average of force multiplied by delta time. However, this
formula is not applicable for computer games because we do
not know the delta time. For this reason, we need to use
another formula that does not require time. That impulse
formula is as follows:

()
))(]([)())(]([)(/1/1

)()()()1(
11 nrInrnrInrmm

nrnrnvveJ
bbbaaaba

bbaaba

×•×+×•×++
•×−•×+•−+−

= −−

ωω (1)

Where, J = impulse (scalar), also denoted as Λ, e =
coefficient of restitution of an object, v = linear velocity
(vector), n = unit surface normal vector, r = distance from
center of mass to collision point, ω = angular velocity (vector),
m = mass, and [I] = inertia tensor.

The coefficient of restitution is a scalar value that tells us
how much of the incoming energy is dissipated during the
collision [22]. This value depends on the material of two
colliding objects. For example, a basketball has a coefficient of
restitution of 0.75 against a hard wooden floor.

Moment of inertia is a quantitative measure of the radial
distribution of the mass of a body about a given axis of rotation
[21]. Inertia tensor is actually just a matrix containing the value
of moment of inertia from three axis: x,y,z (denoted by Ixx, Iyy,
Izz). The general formula for calculating Moment of Inertia is:

 2mrI = (2)

Where, I = moment of inertia, m = mass of rigid body, r =
distance from center of mass to the collision point. The concept
for moment of inertia is simple. However, for calculating the
moment of inertia of a rigid body, the formula is different
depending on the form of the rigid body and which axis it is
facing. Some common rigid body forms are cube, rectangle,
sphere, cone, and cylinder. For uniform objects like spheres or
cubes that we use in this paper, the value of moment of inertia
from any axis is same. Therefore, we only need to calculate
moment of inertia from one axis for these objects.

After we calculate the impulse, we can finally use the
Impulse-Momentum formula to calculate the linear and angular
velocity of the rigid body after collision. The formula used to
calculate linear and angular velocities after collision is as
follows:

 BeforeBeforeAfterAfter v+mvm=v+mvm 22112211 (3)

If the second object is static, e.g. the ground, the formula
can be written as follows:

 +Λvm=vm BeforeAfter 1111 (4)

 Λvm=vm BeforeAfter −2222 (5)

)(111 nrΛII beforeafter ×+= ωω (6)

)(222 nrΛII beforeafter ×−= ωω (7)

 Λn=Λ (8)

Where, m = mass, Vbefore = velocity before collision
(vector), Vafter = velocity after collision (vector), Λ = impulse
(vector), Λ = impulse (scalar), also denoted as J, n = unit
surface normal vector, I = moment of inertia (scalar), ω =
angular velocity (vector), and r = distance from center of mass
to collision point.

III. GAME ENGINE ARCHITECTURE
Figure 3 shows the game engine architecture. In this

architecture, there are some components but the most important
one is the core game engine. This game engine was developed
using some existing physics frameworks that were tested in this
research. After the game engine was developed, test
applications can be generated and finally run on web browsers.
A user interface for the game engine and test applications,
which can be seen from Figure 4, was developed to facilitate
the testing.

The game engine in this project is composed of three main
components: core engine, rendering engine, and physics
engine. The core engine is responsible for managing memory
and acts as the main controller of any other components. The
rendering engine is responsible for displaying the view to the
user, and in this game engine, the rendering engine uses
WebGL technology. The physics engine, which is the main
focus of this research, was developed using three physics
frameworks.

To facilitate the research, the physics engine was
developed to provide a general interface to the physics
frameworks, so the user can simply use the interface function
and choose which framework that will be used instead of
directly using the functions that are provided by the
frameworks. The advantage of this approach is that the user
does not need to change the code if he/she wants to change the
physics frameworks that will be used. After the game engine
was developed, an application/game can be developed and
deployed in the web browsers.

For the experiment, some simple test applications will be
developed and run in the web browser to test the physics
frameworks. The test includes performance testing,
compatibility testing, correctness testing, and completeness
observations. One application will include the performance
and correctness test for every framework. For the
compatibility and completeness observations, each framework
will be tested in separate test applications. Because every
framework has varying features, they cannot be tested in using

 Journal of Game, Game Art and Gamification
Vol. 01, No. 01, 2016

4

one test application. These test applications will be run on
internet browsers.

Fig. 3 The Prototype Game Engine Architecture.

Fig. 4 The Game Engine User Interface.

IV. EXPERIMENTS DESIGN AND RESULTS
For the experiments, the following is the hardware and
software specification.

Processor: Intel(R) Core(TM) i7 CPU @ 1.20 GHz
RAM: 4 GB
VGA adapter: GeForce GT 335M 1GB memory
Operating System: Windows 7 SP 1 64-bit

At the time of the experiment, Mozilla, Chrome, Safari and

Opera browsers supported WebGL. However, the Opera
browser was removed at the later stage of this research
because the current rendering engine cannot be run on Opera.
Another removal is the Safari browser as only the Mac version
of Safari browser is able to run WebGL. Therefore, only two
browser platforms were used: Mozilla Firefox 12.0, and
Google Chrome 19.0.1084.52 m.

A. Design of Experiments
Compatibility Testing. In this test, first an interface

function was created inside the game engine code. This
function wraps the physics functions from the physics
frameworks. After the function is integrated, compile time

check was carried out to test whether there was any conflicting
code or not. The error was recorded and the function was
removed if there was an error. If there was no compile time
error, run time checking was carried out. Again, if there was
any error recorded, the test would be concluded.

Performance Testing. To test the physics framework’s
performance, a test application that can generate physical
objects continuously was developed. When the application
ran, there were no objects. The application generated a
physical object every second interval and the frames per
second (FPS) rate of the scene was monitored. If the FPS rate
dropped to less than 12, the test was stopped.

We created three test scenarios for performance testing by
creating scenes that contained a lot of physical objects that
collided with each other so the application forced the CPU to
calculate heavy physics computations. The heaviness of this
computation can be monitored by looking at the FPS (frames
per second).

Scenario #1. A spheroid rigid body was generated every
one second until the FPS dropped to 12 or less. In this test, the
gravity of the world was y = -10. The specification of the rigid
body was as follows: mass = 0.5kg, radius = 2m, start location
x = 0 if the object number was even and x = 1 if the object
number was odd, start location y = 20, start location z = 0, no
initial velocity. There was also a ground/plane located at y =
0. We assume there was no friction involved in this test.

Scenario #2. A box rigid body was generated every one
second until the FPS dropped to 12 or less. In this test, the
gravity of the world was y = -10. The specification of the rigid
body was as follows: mass = 1kg, width = 2m, length = 2m,
height = 1m, start location coordinates (0, 20, 0), no initial
velocity. There was also a ground/plane located at y = 0. We
assumed there was no friction involved in this test.

Scenario #3. A box and spheroid rigid body were
generated alternatively every one second until the FPS was
dropped to 12 or less. In this test, the gravity of the world was
y = -10. The specifications of the rigid bodies were as follows.
Box with mass = 1000g, width = 2m, length = 2m, height =
1m, start location coordinates (0, 20, 0), no initial velocity.
Sphere with mass = 500g, radius = 2m, start location
coordinate (0, 20, 0), no initial velocity. There was also a
ground/plane located at y = 0. We assumed there was no
friction involved in this test.

Correctness Testing. In this test, the accuracy of the
physics for collision handling were recorded. For this test, first
the test application was run. There were two objects inside this
application. One of them was static on the ground and another
one was a falling object in the air. The position of the falling
object was updated from time to time until it finally collided
with the object on the ground. When the two objects collided,
the collision was handled. Finally, the velocity of the falling
object was recorded and analyzed for its correctness by using
a relevant physics formula. This test was done five times on
each browser, and the errors or deviations from the physics
formula were averaged. We chose the sphere-box collision
because it covers many formulas such as box inertia, sphere
inertia, and rigid body collision.

 Journal of Game, Game Art and Gamification
Vol. 01, No. 01, 2016

5

For this test, the test scenario was as follows: There were
two rigid bodies, one box and one sphere. The specifications
of the box were: mass = 1kg, width = 4m, length = 4m, height
= 6m, x = 10, y = 5, z = 0. The specification of the sphere was:
mass = 0.5kg, radius = 1m, x = 7, y = 8, z = 0. The box was
static (no velocity) while the sphere moved 10m/s toward the
x axis. No gravity and friction were involved in this test. The
velocity after the collision was recorded and analyzed for
correctness. From the scenario above, by using the previous
formulas, the end result after collision was as follows. The box
velocity (x,y,z): (2.1, -0.4, 0), box angular velocity (x,y,z): (0,
0, -1.3), sphere velocity (x,y,z): (5.8, 0.8, 0), and sphere
angular velocity (x,y,z): (0, 0, 3.1).

Completeness Observation. For the completeness
observation, first, additional functions that were provided by
the physics frameworks were listed. After that, each of those
functions was tested to determine if it can be used or not. The
test results were recorded and used to determine the
completeness of the physics frameworks. Since there was no
limit to completeness, the completeness was determined based
on the commonly used physics features only. Those features
were plane, sphere, box, capsule rigid body, ray cast,
constraint, ragdoll, cloth, soft body, and water surface physics.

B. Experiment Results
Compatibility Test result. Based on the result on Table I,

only two out of three frameworks were compatible with our
game engine. Note that the asterisk sign (*) in Table 5
indicates that there was no actual function (API) provided by
the framework, but the problem can be solved by creating a
function, in the game engine, that accesses the variable
directly.

Both bullet.js and cannon.js had no trouble in
compatibility, except that the cannon.js setting for the rigid
body rotation was still not working properly. The most likely
reason for this is that there was a bug in the framework.
Overall, bullet.js worked quite well and cannon.js lacked some
APIs but was still compatible to be used. However, jiglib.js
was not compatible at all with our game engine, so we did not
use it further in our experiments.

To summarize, the framework compatibilities are as
follows.

- Bullet.js: 100 % (15 out of 15 functions)
- Cannon.js: 86.67 % (13 out of 15 functions)
- JibLib.js: 0 % (0 out of 15 functions)
Performance Test result. The results of this test were

obtained by calculating the average maximum number of
objects before the FPS dropped to 12. From Table II, we can
see that the performance was better in Google Chrome rather
than in Mozilla Firefox. This is to be expected because Google
Chrome can interpret JavaScript language faster than Mozilla
Firefox and since all physics code were written in JavaScript,
Google Chrome had the advantage over this. In our
evaluation, Google Chrome performed up to 282% faster than
Mozilla Firefox.

For the performance of the physics framework itself,
overall, the performance of cannon.js was a little bit faster

compared to that of bullet.js. If we look carefully from the
results, cannon.js performed faster in calculating spheroid
rigid bodies compared to bullet.js based on the result from
scenario #1 and #3. For box rigid bodies, it seems that both
cannon.js and bullet.js performance was similar; cannon.js
performed better in Mozilla Firefox, and bullet.js performed
better in Google Chrome based on results from scenario #2 in
Table II. On average, cannon.js performed 13.88% faster than
bullet.js.

Performance wise, both physics frameworks can be used as
physics engines for games in WebGL. Based on the results, it
was not favourable to deploy games with a lot of physics
objects in a Mozilla Firefox web browser.

TABLE I. THE COMPATIBILITY TEST RESULT

TABLE II. THE PERFORMANCE TEST SUMMARY

Correctness Test result. From Table III and IV, we can see

that bullet.js has more accurate physics. Cannon.js seemed to
perform well in box handling, but not on spheres. Bullet.js can
handle both boxes and spheres very well. The error values
from both frameworks were acceptable (less than one) except
for spheres in cannon.js. The spheres in cannon.js did not

 Journal of Game, Game Art and Gamification
Vol. 01, No. 01, 2016

6

rotate when they should have rotated. We also found that the
physics simulated by Bullet.js wer stable, in the sense that
they had the same result no matter how many times the tests
were carried out. However, cannon.js was a bit unstable in the
sense that the results varied on each attempt. This may be
because the cannon.js was not using continuous collision
detection, so the collision point varied on each run. On the
other hand, bullet.js was using continuous collision detection
so the collision points were always the same; therefore, the
result was always the same.

Completeness Observation result. From the results in
Table V, bullet.js fulfilled all requirements for commonly used
physics in game, except cloth, water surface, and soft body
physics. This is because Bullet.js has been developed for some
time already, while cannon.js was new. So it is to be expected
that bullet.js would have more features. Even so, cannon.js
provided the most basic features of physics that should be
sufficient for simple games development.

TABLE III. THE ERRORS ON BOX BODY OBJECTS

TABLE IV. THE ERROR ON SPHEROID BODY OBJECTS

TABLE V. THE COMPLETENESS OBSERVATION RESULT

Based on the results of the four experiments above, it can

be said that bullet.js was the best physics framework in this
research due to its accuracy, completeness and compatibility.
Cannon.js was better in term of performance compared with
bullet.js, and this framework showed good potential if it was
updated regularly in the near future, especially bug fix updates
and API updates. It was unfortunate that JigLib.js could not be
tested because it could not run in our game engine due to its
incompatibility.

V. CONCLUSION
In this paper, we have shown that some open source

physics frameworks can be used as a component of WebGL-
based game engine with acceptable accuracy and performance.
This is very promising considering the physics frameworks that
we tested still lacked features and there were still many things
that could be improved. Another finding from this research is
that Google Chrome seems to perform best in running WebGL
applications compared to Mozilla Firefox browser.

In brief, it is recommended to use bullet.js if accuracy is
critical, and use cannon.js if accuracy is not the main issue. As
a reference, some of the game genres that usually need more
accuracy are fighting, racing, and most FPS games. The games
that require less accuracy include puzzle, RPG, and RTS
games. From our observations, it seems that bullet.js is capable
to be used for making racing games or simple fighting games,
while cannon.js might be better to be used in puzzle or simple
RPG games because cannon.js is lighter in term of computation
cost.

Some possible future work includes using capsule rigid
body for testing, implementing more physics frameworks, and
adding more scenarios for testing the correctness, especially
testing objects with initial angular velocity, gravity and friction
enabled.

REFERENCES
[1] D. Schultheiss, “Long-term motivations to play MMOGs: A longitudinal

study on motivations, experience and behavior,” DiGRA, 2007, pp. 344.
[2] Angry Birds, [Online]. Available: http://www.angrybirds.com/.
[3] Cut the Rope, [Online]. Available: http://www.cuttherope.ie/.
[4] Pokemon Go, [Online]. Available: http://www.pokemongo.com/
[5] Khronos Group, “WebGL - OpenGL ES 2.0 for the Web,” [Online].

Available: http://www.khronos.org/webgl/.
[6] Game engines and tools, The Mozilla Developer Network, [Online].

Available: https://developer.mozilla.org/en-
US/docs/Games/Tools/Engines_and_tools

[7] C. Marrin. "WebGL specification." Khronos WebGL Working Group,
2011.

[8] A. Deveria. “Can I use WebGL?” [Online]. Available:
http://caniuse.com/webgl.

[9] J. Gregory, “Foundations in Game Engine Architecture.” Massachusetts,
A K Peters, Ltd., United States of America, 2009, ch. 1, pp. 3-55.

[10] Unreal Engine. [Online]. Available: https://www.unrealengine.com/.
[11] Construct 2. [Online]. Available: https://www.scirra.com/construct2.
[12] Unity. [Online]. Available: http://unity3d.com/unity/.
[13] PhysX - GeForce. [Online]. Available:

http://www.geforce.com/hardware/technology/physx.
[14] Havok. [Online]. Available: http://www.havok.com/.
[15] G. Mulley and M. Bittarelli. “Ragdoll Physics.” [Online]. Available:

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S07/final_proje
cts/mulley_bittarelli.pdf. 2007

[16] J. Gästrin, “Physically Based Character Simulation–Rag Doll Behaviour
in Computer Games.” Royal Institute of Technology, Stockholm. 2004

[17] Game Physics Simulation. [Online]. Available:
http://bulletphysics.org/wordpress/.

[18] kripken/emscripten Wiki · GitHub. [Online]. Available:
https://github.com/kripken/emscripten/wiki.

[19] JigLibJS. [Online]. Available: http://www.jiglibjs.org/.
[20] S. Hedman. [Online]. Available: http://schteppe.github.com/cannon.js/.
[21] D. M. Bourg, “Physics For Game Developers.” O'Reilly Media, Inc.,

2002.
[22] C. Hecker. "Physics, part 3: Collision response." Game Developer

Magazine, 1997, pp: 11-18

