
Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

54

Predicting Preference with Sparse Data in

Personalized Gamification via Deep Learning

Philip Wilson

Computer Science

Florida Polytechnic University

Lakeland, USA

pwilson8655@floridapoly.edu

Dr. Bradford A. Towle Jr.

Computer Science

Florida Polytechnic University

Lakeland, USA

btowle@floridapoly.edu

Abstract – Personalized gamification is a practice that is

relatively well defined and improves the effectiveness of a

gamified system. However, in practical application the

improvement is not as significant as expected. The process of

personalizing a gamified system is taxing and relatively

unfeasible, with far too many aspects to consider to produce an

effective result. Artificial intelligence, and neural networks, can

step in to alleviate much of the work, but even still results are

inconsistent at best. This project seeks to remove this

inconsistency by attempting to personalize only one aspect of a

gamified system, rather than the entire system as a whole. By

attempting the personalization problem in this manner the

amount of individual characteristics to consider is reduced

dramatically, thus allowing for a neural network to more quickly

and accurately determine personalization characteristics and

apply them for any given user. Results show that an RNN can

detect preference patterns and apply user preferences to a

scheduling system. These results were produced with little run

time and a more sparse dataset than normally expected for a

neural network, which showcases the novel fact that detecting

user preference does not require large datasets.

Keywords – gamification, personalized, adaptive, dynamic

adaptive, neural network

I. INTRODUCTION

Gamification is a field within computer science that is
directed toward the modification of system design to mimic
those of gaming entertainment systems. It is the process of
adding game-like elements to a non-game setting. The
purpose of this approach to design is to increase user
interaction with the system in question [1] [2] [3]. There is
no one single way to approach the design of a gamified
system. Despite this lack of structure to the design approach,
there are common factors that are considered when adding
game-like elements [4] [5]. While the lack of rigidity gives
developers freedom, that freedom comes at the expense of
producing a universally effective product. Gamification
motivates the user by encouraging interaction with the
system; however, this benefit is directly proportional to the
user’s willingness to interact with the system. This issue is
what limits the effectiveness of gamification [6] [7]. The
main issue stems not from the design, but from the users
directly. Everyone has a different psychological profile; they
do things for different reasons as they have unique
preferences. Modern gamified systems are designed to work
moderately well for everyone, these systems are designed to

be enjoyable to as many users as possible. This type of design
and implementation often only leads to moderate
improvement among the users, leaving gamification in a
situation where more effort is put into creating the system for
only a slight to middling perceived benefit.

This conundrum created the sub-field of personalized
gamification. Personalized gamification seeks to increase
engagement and effectiveness of gamified systems by
designing the system for a specific user. This design shift of
gamification emerged because gamified systems are
designed with a one size that fits all approach. An un-
personalized gamified system is rigid and unchanging. It will
function exactly how it was built to do forever, regardless of
user input and preference. This is usually not a problem as
gamification as a study always shows results that are
indicative of an improvement. The problem is that the
improvements can sometimes be minimal. Personalized
gamification design alleviates this by creating a system that
responds to data and allows for a shift in its processes that
make it more desirable to the user. Research shows that
gamified systems that contain elements that users respond
positively to produce better results than those that don’t.
However, there is a glaring issue when considering the
design and development of a personalized system.

The issue with these types of systems is not the data
collection, but the ability to use that data meaningfully. This
process would be very painstaking as well as economically
unfeasible. Each time more data is gathered and new
personalization strategies emerge, the design and
implementation work would multiply exponentially [8].
Designing a system for one user, or type of users is less of an
issue. The real problem is that systems are often designed for
billions of users, and the process of personalizing that system
for each of the expected users is not feasible. This would
require an understanding of all the possible user
characteristics and contextual characteristics. This issue is
what keeps personalized gamified systems from being more
mainstream. [6] [7]

The proposed fix that research considers is adaptive
gamification. This is where systems are designed to collect
data as they are used and, by using artificial intelligence,
respond to that data by modifying the system based on the
collected data. A sort of middle ground between a normal
system and a personalized one. Adaptive gamified systems

mailto:pwilson8655@floridapoly.edu
mailto:btowle@floridapoly.edu

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

55

are automated to adjust dynamically as they are being used.
These types of systems are more effective than rigid systems,
but not as effective as a personalized one. Research was
conducted to see if the gap between personalized and
adaptive gamification could be widened; instead of using AI
to merely adapt the system, if it could be used to personalize
them. [9]

This project selects one gamification element to
personalize, scheduling priority, and seeks to prove that
automation of personalization is possible. Adaptation of a
system automatically has been done and has been shown to
work well. The issue is that adaptive systems react at a large
scale to all the data collected from across its entire user base.
Rather than attempting to personalize an entire system, this
project attempts to show that a single type of gamification
element, in this case task scheduling, can be personalized
automatically. The hypothesis is if this process can be
applied to one gamification element it can be applied to any
of them. If that is true, then all those elements can be
personalized and combined to produce a resulting system that
is tailored at the user level rather than a user base level.
Multiple tests will be run with increasing levels of element
complexity. Both human tests and AI generated tests will be
conducted to determine if there is a noticeable difference in
neural network learning speed and accuracy among data that
is procedurally generated versus data that is created by
human input, which is expected to be more raw and less
uniform. This study differs in a novel way from previous
personalized gamification studies in that it focuses on the
results of a neural network and its ability to properly
personalize a system, rather than the results of a gamification
user study.

II. RELATED WORKS

A. Justification for Researching Personalized

Gamification

Previous research done on gamification is widespread
and a well-documented and studied field of computer
science. Personalization is a newer field within gamification
research, and the application of artificial intelligence is even
newer still. The need for continued research for personalized
gamification lies in its core problem. There is a very large
overhead cost for creating a personalized gamified system.
Players crave novelty, they will get bored doing the same
challenge day in and out. Developers experience a large
amount of pressure attempting to create endless amounts of
challenges and adapting existing games based on feedback.
[10]. As mentioned before, the common idea presented to fix
this issue is automation. This fix however belies another
question, that being which part to automate, and how to
automate it.

Creating a system that dynamically personalizes while a
player, or user, interacts with it is no easy feat, again going
back to the core problem of personalization. Even an
automated system still needs to be developed such that it can
adapt to all possible user characteristics. Personalization
when done properly needs to be based on player psychology
and aligning player types to specific game elements. A time-
consuming process to undertake and one that presents an
issue with personalization, as well as research on the concept.

A large motivation for gamification research is enhancing
the learning process for students. As a result, a lot of
personalized gamification studies are also directed toward
student’s learning. However, the psychological aspects of
learning are imposing and difficult to personalize effectively,
and the results are usually lackluster. There was a study done
that addresses this issue by focusing on a smaller scale
problem. This study produced very good results compared to
non-personalized methods which could indicate that many
current studies may not be producing realistic results for how
effective personalized gamified models can be [11].

Another break from traditional personalization research
comes from a project that presented an approach that did not
simply personalize a gamified system, but rather a
recommender system that could be applied to the game. This
study continued to discuss the importance of player
psychology and the alignment of a player’s personality to
specific game elements, and much like the project referenced
above, narrowed in on specific elements of the user to focus
on, as well as game elements that should be personalized first
[12]. It was shown that not every aspect of the system needs
to be personalized, only certain aspects such as activities,
gameful elements, and persuasive strategies. These studies
help to show that personalized gamification may not require
as much overhead as people believe and that the scale of what
needs to be personalized may be smaller than anticipated.

B. Personalized Versus Adaptive Gamification

The improvement of gamification extends past the
personalization approach. As mentioned before, adaptive
gamification is another approach that seeks to tailor a
gamified system for the user. However, there are some
downsides to this approach. The most glaring of them is that
the adaptation process is done at the beginning of the design
process. This is done by means of surveying the prospective
users and determining what their player type is. From that
result, gamified systems are then tailored to the player.
However, this approach is very static and does not allow for
changes as the players use the system[13]. Data is best
gathered from use rather than from surveys alone. People can
misunderstand questions and give inaccurate results. Rather
than simply making an adaptive system, the better approach
is to make a dynamically adaptive system, which is one that
learns and changes to better suit the user as they interact with
it. Another such term for this type of design is also referred
to as adaptable [14]. This crossing of terms is one of the
reasons that research into this field is so difficult. The same
term is often said to describe similar ideas, but does not have
one concrete, agreed upon definition. As it stands, adaptive
gamification is the style where features are created to fit
expected player types. Personalized gamification is
seemingly the same as dynamic adaptive gamification, or
adaptable gamification. The style in which users can affect
the system directly to personalize it themselves. For the
purposes of this paper, personalized gamification and
dynamically adaptive gamified system will be used
interchangeably.

C. AI and Gamification

The dynamic approach to personalization is often done
through artificial intelligence. Methods are created to track
user progress through the game and compare what is being
done to preference tables that are created at the beginning of

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

56

the design process. As player scores are updated, dynamic
systems adjust to present specific preset elements that are
likely to be desirable based on where the user score falls in
terms of player type [15]. This approach does still suffer from
the static approach that plain adaptive models do. Players are
sorted into their player type from the beginning based on
preliminary survey results. Once sorted it can be difficult to
adjust one’s scores enough to reach a presentation style that
is truly personalized, especially if the original survey results
happened to be incorrect. Other approaches use deep learning
to personalize the gamified learning system from the ground
up [16]. All users start with the same system, but as the users
interact with it, multiple aspects of the system adapt to their
preference and cognitive level. The adaptation style is
notable as well because only select aspects of the system
adjust. This relates back to the notion that research into
adaptable systems produces mediocre results because too
much is being attempted at once. This study adapts very few
features: the presentation style, the ability to skip lessons, and
the adding of hints and extra attempts. This study showed
great results by reducing time spent using the system and
increasing the scores of the students versus typical results for
gamified learning systems. This brings up two crucial
questions; how much a system needs to change to become
personalized and exactly how personalized a system needs to
become to produce better results.

 The questions above drove this project to be smaller
scale than most other prominent research involving
dynamically adapting gamification systems. To determine an
answer, this project focused on only a single aspect of
gamification, task ordering. That a to-do list is considered a
gamification element is not common sense to most
individuals. Most games, however, have some sort of order
applied to them. Whether it be linear through a story mode
that has to be completed in order, or as the game progresses
players can be given two or more paths to determine their
own adventure. In the same way that people order their daily
tasks, games give players a task structure as well. This
feature seemed a proper element to focus on because people
have an innate capacity to order tasks. Each individual has
their own method for untangling a messy workload and
determine what, for them, is the best and most comfortable
way to approach them [17]. There are a variety of ways in
which people could choose to order tasks: due date, priority,
how long the task will take, and even by cognitive load [18].
Despite the innate wanting to have an ordered list of tasks,
people can have a weakness for organizing and managing
those to-do lists. New tasks can be added on after the list is
made which leads to the need and creation of a separate list.
Over time things become cluttered and unmanageable which
defeats the purpose. In a previous study, it was determined
that an automated and intelligent to-do assistant can help
users with the process of breaking down a list of tasks and
helping them create and manage their list of tasks [19]. This
helps to show that the automation of task ordering is both
beneficial and not entirely unfounded. A perfect model
simply has yet to be created. Bridging this concept into
personalized gamification seemed the most logical approach
to take when considering how to further what could be
considered a field stuck in a rut. Dynamic adaptive systems
should work better, but the results are often just slightly
better than normal.

 Personalized gamification research suffers from doing
too much at once. By focusing on just a single attribute of
personalization, it is plausible that a higher degree of
accuracy, when concerning personalization levels, can be
achieved. By choosing an attribute that is core to human
personalities, a simple but effective system could be
produced.

D. Using Neural Networks for Gamification

Automating a gamified system has been the common
approach to personalizing systems. The breadth of the
complexity the automation takes varies. There are many
factors to take into consideration. It makes logical sense that
a neural network of some kind should be utilized. Projects
done previously that directly utilize neural networks solidify
this [16]. A neural network is a technique in machine learning
that was derived from and built to resemble the human
nervous system, which in of itself is a marvel of engineering,
biological as it may be. Neural networks are made up of units
that are organized into different layers: input, hidden, and
output. Each unit in a layer is connected to a different unit
within a different layer and each of those connections has a
weight. Inputs are multiplied by the weights at each unit and
undergo transformations. The output of those transformation
functions is then fed into the next layer of units. When there
are no more layers left, the solutions of the problem is
considered finished [20]. Neural Networks can be applied to
a variety of problems such as pattern recognition,
classification, clustering, dimensionality reduction,
computer vision, natural language processing, regression,
predictive analysis, scheduling, and many more. Neural
networks can also be broken into five different types of
networks. Feedforward neural networks, recurrent neural
networks, radial bias function neural network, Kohonen self-
organizing neural network, and modular neural network.
Each of these have specific advantages over the others and
with enough effort can all be used to solve essentially the
same problem with varying degrees of success. The nature of
the problem at hand with this project leads to the conclusion
that pattern recognition and the ability to make predictions
on future occurrences would be either necessary or
beneficial. Research and past implementations indicate that
feedforward and recurrent neural networks are the two
strongest candidates for this project.

Feedforward neural networks (FFNN) are a type of
neural network where information only flows in one
direction, from input to output. Recurrent neural networks
(RNN) differ in that the units form a cycle. Output from one
layer becomes the input to another allowing for RNNs to
have memory of previous states and use that memory to
influence the current output [21], [22], [23], [24], [25]. As
previously stated, neural networks have many applications to
various problems. Past applications of FFNNs include
pattern classification, data mapping, forecasting, and have
even been used to determine the optimal size that a FFNN
should have for specific problems before diminishing returns
[26], [27], [28], [29], [30], [31]. Applications of RNNs
include sequence prediction, stock market prediction,
pattern-shape recognition, speech recognition, language
modeling, and scheduling problems [32], [33], [34], [35].
Provided what is believed to be necessary for the completion
of this project and based on the applications above, FFNNs
and RNNs are the two types of networks that are to be used

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

57

for testing. Particularly the ability of RNNs to process
sequential data and learn patterns and dependencies. This
makes them powerful tools for determining orders of
operations.

Despite the difference between FFNNs and RNNs there
is a common similarity between these two, and the other
types, of neural networks. That being the size of the network.
A general rule of thumb for neural networks is to have them
be relatively large. This is required to prevent overfitting and
reduce generalization on new, unseen data. Depth and width
are the common terms for the size of a neural network, depth
being the number of layers and width being the number of
neurons per layer. Commonly, depth is the more relevant
factor. It is better to be narrow and deep than shallow and
wide [36]. It is also worth noting that the applications cited
above have little to do with task ordering, save for the ability
of neural networks to perform scheduling operations.

E. Personalized Gamification and Job-Shop Scheduling

Scheduling as a problem both in computer science and
industry is approached as an optimization problem. The job-
shop scheduling problem is a quintessential example of this,
where there are jobs to be completed, and they have
prescribed numbers of operations that can only be done by a
dedicated machine. The goal is to minimize the function of
job completion times such that no two operations are ever
done by the same machine at any given moment [37], [38],
[39]. In the past, this problem was solved by human experts
alone. The introduction of Ai agents and the implementation
of neural network schedulers opens many possibilities for
other practical approaches to solve the job-shop problem
[40], [41], [42]. The application of neural networks to the
solving of the job-shop problem not only performs better, but
also increases the scale of problems that can be feasibly
solved [43]. Scheduling problems as they have been
approached before are aimed at business and manufacturing,
minimizing their time and cost to make a profit.
Minimization is an optimization problem. This is not the
problem that is being addressed in this project. Research has
shown that neural networks are powerful tools capable of
solving complex problems by learning and acting in a similar
manner to how our brains function. The human mind,
however, is more than just logic and optimal solutions.
Emotion, personal bias, and preferences impact one’s
decision-making process. The goal of this project is to train
a neural network to recognize those preferences and tailor a
system to that person. By only focusing on one aspect of
preference, task organization, it is believed that the system
will be able to learn quickly and accurately. Based on the
applications cited above, FFNNs and RNNs make the best
candidates to work with. The largest differences between this
project and what has been done before are the hyper focus on
one user preference/game element and the use of a scheduler
that does not seek an optimal solution, but rather a preferred
one.

III. METHODOLOGY

To test and prove that machine learning can be used for
the purposes of creating a personalized schedule for users’
data will be required. Data is created in one of two ways. The
first is by means of self-generating data and storing it in a file
to be sent to the neural network later. The second is
generating the data as it is needed, but in smaller amounts at

a time. These two types of data generation are important as
one represents how neural networks often see data, in large
amounts, and the other mimics a user interacting with the
system during their use of it. All the data is formatted in the
same way regardless of the size of the pool. Each data entry
contains 5 separate metrics that represent factors individuals
are likely to consider when ordering tasks. The 5 metrics to
be used include: time remaining, task novelty, priority level,
task length, and job code. This data represents what will
become X when splitting the data into training and testing
sets. The Y value is created by taking each point of data and
comparing it to each other point in the same set. In the case
of 10 tasks there would then be 100 data points that represent
each task being compared to all others. The Y value will be
either a 0 or 1 depending on if task i comes before or after
task j. The criterion for ordering varies, but is always
consistent for any specific test. The resulting data is then
placed into pairs of inputs with a single output. Once the data
is created, it is split into training and testing sets.

Fig. 1. Example of input data

Fig. 2. Example of Data Flow to Output

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

58

In addition to requiring data, neural networks also need
to be created. The data being sequential in nature indicates
that an RNN is the most correct choice. Preliminary testing
had FFNN fail to produce acceptable results. This is due to
the nature of the data format. FFNNs when considering
binary outputs take two inputs and produce a single output.
In a normal case this would have functioned well. The issue
with the shape of the data being input is that each X has 5
subpoints. This essentially means there are 10 inputs for a
single output. It is assumed that this is the reason FFNN was
unable to produce an acceptable model. Due to the form of
the data essentially containing 10 inputs the RNN is going to
be set up with an input size of 10 and will have a single
hidden layer with a size of 16. The output size is 1 for the
purpose of binary classification. The goal is to place one task
either before or after the other by outputting either a 1 or 0.
The batch size is set to 32 to strike a balance between
efficiency and learning ability. The epoch size will be 100 for
the same reasons. The RNN needs to be able to detect and
learn the patterns in the training data. The learning rate will
be set to .001 to allow for gradual updates to the weights of
the RNN.

After a trained model is produced, its training accuracy is
calculated. Should the value be sufficient the model is then
shown new data. This new data is created exactly the same
as training data but always contains only 10 tasks. The newly
generated data is sent into an insertion sort algorithm. Within
this algorithm, the trained RNN will sort the entire set of 10
tasks by producing a 1 or 0. That value is used to gradually
sort the new data. Once finished, the data sorted by the RNN
is then checked by hand to determine how many of the tasks
were sorted properly. This is done by comparing what the
RNN produced against the true order the tasks should have
had. Each task in the incorrect position is considered ignored
and the validation accuracy is reduced by 10 percent. The
resulting score represents the validation accuracy of the
RNN.

IV. TESTING PROCEDURE

The process of testing the RNN is broken into two parts,
A and B. Test A is meant to replicate the scenario in which a
user would be interacting with a gamified system that is
attempting to personalize as they interact with it. Test B more
closely mimics adaptive gamification in which a user would
provide details about their preferences beforehand and the
system would modify itself from the beginning rather than
gradually over time.

The process of performing test A begins with generating
data. 10 tasks are created with 5 metrics that are randomized
between set ranges. Time remaining ranges from 1 through
365. Priority, novelty, and job code have ranges from 1
through 10. Length has a range from 1 to 20. After the data
is properly generated and shaped, the RNN is run through the
training process. After 100 epochs the training accuracy of
the RNN is determined. If the accuracy is lower than 98%,
new data is randomly generated in the exact same manner as
before, though the values of the task metrics will be different.
This new data is then added to the original to create a larger
set for the RNN to use for training. This process simulates
what would happen if a user were interacting with this
system, adding new preference data for the RNN to work
with while retaining the data from the previous interaction.

With the new data added, the RNN is completely
retrained using the larger amount of information available to
it. This process repeats until the training accuracy reaches
98% or higher, or until 20 iterations have been run. If the
RNN does not reach 98% accuracy after 20 loops, the
accuracy it currently attained will be used for validation. The
validation process is conducted 3 times with a single trained
model. This is done to ensure the RNN is not producing
correct values by pure happenstance and correctly guessing
how tasks should be sorted but genuinely learned the pattern
that was present in the data. The 3 values are then averaged
and become the final value for that iteration of the current
test. Once validation is completed, the entire training process
is conducted again 2 more times. This is to ensure that the
RNN is consistently capable of learning preference patterns.

Fig. 3. Test A Flowchart

Test B follows a similar process to test A. The biggest
difference is that test B does not use randomly generated
data, but rather a stockpile of 35 tasks. Those 35 tasks are
ordered using the same logic as those from test A, but the
outcome presents the RNN with over 1200 points of
comparative data as opposed to 100. This is because a single
task is compared with 34 others instead of 9, which gives the
RNN far more correlational information to work with. Even
as test A loops and the dataset grows larger, the data is self-
contained every 10 tasks. Task 1 is never compared to task
14 because they were created and ordered at different times.
Test A was designed this way because a user, after getting a
new set of tasks, would not go back and consider previous
work they had done.

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

59

With the data for test B formatted, it is then sent to the
RNN for training. Training for test B is not repeated until
98% accuracy is reached, but instead only runs once. The
validation process is conducted 3 times and averaged 3 times,
just as test A. The last difference is that test B is not run 3
times. It is meant to represent preset data inputs, to show the
difference between personalized gamification and adaptive
gamification.

Fig. 4. Test B Flowchart

A. Test 1

Test 1 uses the simplest method of ordering logic. It only
focuses on one of the 5 metrics, in this case, task length. If
the length of task i is less than that of task j, the resulting
value for that pair will be 1, otherwise, the value returned is
0. RNNs can often have trouble with patterns that are
extremely simple, especially when the dataset is small. For
this reason, test 1A, rather than being run 3 times with the
same parameters on the training data, it has seven different
iterations where the training data varies between each. Each
of these iterations made changes to the input data. The first
iteration used data that was generated using the prescribed
values, serving as a control test.

Iteration 2 had the values of length changed to range
between 1-10,000. This was done to determine if
performance was low because too many of the values were
the same in the length metric. The goal was to reduce the
chance of repeat values. Iteration 3 followed the same logic
as the one before it but only ranged from 1-100. Iteration 2
performed poorly and the cause could have been due to the

values in the length field being too varied from the other 4
metrics. Iteration 4 adjusts the value range for length to 1.00-
20.00. This strikes a balance between 2 and 3 where there are
thousands of possible values, but they will not be drastically
different than the other metric values, which would reduce
skewing of the model. Iteration 5 expands on this by reducing
the time remaining to 45 from 365. Iteration 6 dropped all
metrics except for length while iteration 7 normalized the
values of all 5 metrics.

B. Test 2

Test 2 adds a second metric for calculating order, that
being time remaining. In the case that two tasks share the
same length, time remaining is used to determine which
should come first amongst the two. Data generated using this
logic was iterated upon two times. The third iteration changes
the second metric to novelty as opposed to time remaining.
This was because time remaining, having such a large range
of possible values meant that no two tasks in groups of 10
ever had the same values. It was believed that perhaps the
RNN was detecting time remaining as the primary metric for
ordering instead of using it as a secondary one.

C. Test 3

Test 3 expands on the idea of test 2 and adds a third metric
to be considered when ordering. For iteration 1 and 2 that
metric was novelty. Iteration 3 switches the position of time
remaining and novelty as the second and third metric for
ordering. The logic for this swap follows that of test 2. Time
remaining is likely never going to have repeat values across
10 tasks. This would mean that the third metric for ordering
was never reached. To ensure that the RNN can detect
multiple levels of preference, novelty was made to be the
second metric. Length having a range of 1 through 20 and
novelty being from 1 to 10 means there is a much higher
likelihood for there to be repeat values. In the case that there
is, time remaining would be useful as a third metric.

D. Test 4 (Complex Sorting logic)

The fourth test to be conducted uses a much more
complex sorting logic than tests 1, 2, and 3. Relatively
speaking they have simple logic for sorting tasks, only using
less than or greater than operators to determine order. To test
the RNN’s ability to learn highly complex patterns, test 4
orders its data in a manner that attempts to confuse the RNN.

Data for test 4 is ordered by first looking at the priority of
2 tasks. If the first task has a priority of 8 or higher and the
other does not, then that task comes first. If both tasks have a
priority of 8 or higher, the one with the higher priority goes
first. Should both tasks have the same priority that is either 8
or higher, or if both tasks have a priority lower than 8, then
time remaining is used to determine which should come first.
This ordering schematic, while still checking if some values
are greater than others, adds extra layers to that comparison,
serving to better simulate how an actual person might order
their tasks.

Just as with test 1, test 4 has more than 3 iterations and
each iteration makes changes to parameters rather than
simply repeating for consistency evaluation. The difference
between this and test 1 is that rather than adjusting the
training data, adjustments were made to the parameters of the
RNN itself. The first iteration serves as the control test where
no modifications are made. Iteration 2 sets the batch size to

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

60

16 rather than 32. Iteration 3 only changes the epoch count,
raising it to 200. Iteration 4 combines the changes of
iterations 2 and 3 by dropping the batch size to 16 and
increasing the epoch count to 200. The final iteration checks
to see what happens when the batch size is 2. Test 4 also does
not run a test B. Being created to mimic complex human
preferences it seemed unnecessary to run a test designed to
work like a preference setting rather than a dynamic learning
model.

V. RESULTS AND ANALYSIS

A. Test 1A

Test 1A produces rather perplexing results(Fig. 3). It was
presumed that such a simple pattern would be easily
recognizable. Multiple conclusions can be drawn from these
results. One such is that the pattern is too simple for such a
large input size. 5 metrics for 2 tasks are given. Asking a
RNN to automatically draw a conclusion from a large input
that only uses a fraction of it may be too difficult. However,
iteration 6 dropped the impertinent values to zero, and while
that test does have the highest training accuracy it still has
low validation(Table 1). This leads to a conclusion that the
shape and size of the data is producing too much noise for
the RNN to filter out and perhaps requires that the irrelevant
columns of data be removed completely. It is clear here that
for this preference pattern, there is a large degree of
underfitting. This leads to the assumption that the RNN itself
may need to be modified to accommodate learning for this
test, as the input data was manipulated in many ways to
alleviate the accuracy problems. Under most circumstances,
validation is to be run 3 times per iteration to determine if the
trained model is consistent with its ordering skills. With such
low values of accuracy being returned, it was deemed
unnecessary to check for consistency. The only two that had
validation run 3 times were iterations 1 and 7 as those are the
two that likely had the highest chance of performing well,
though the results prove otherwise.

Fig. 5. Test 1A Training Accuracy

TABLE I. TEST 1A VALIDATION ACCURACY

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7

30% 20% 10% 50% 20% 40% 40%

50% N/A N/A N/A N/A N/A 50%

50% N/A N/A N/A N/A N/A 40%

A
VG:
43%

A
VG:
20%

A
VG:
10%

A
VG:
50%

A
VG:
20%

A
VG:
40%

A
VG:
43%

B. Test 1B

Test 1B performs much better than test 1A for training
accuracy (Fig. 3) and validation accuracy(Table 1). Having
training accuracy, no lower than 95 across all 3
iterations(Fig. 4) and having a validation accuracy close to
those values on average for each of those iterations (Table 2).
This is indicative of one of the generic fixes for underfitting,
an issue seen from test 1A. That fix being to give the RNN
more data to work with. Test A technically contains more
comparisons after a few loops. The difference is the amount
of correlation between all the data. Test A only compares
groups of 10 tasks at a time, meaning the data is more
separated. Test B compares 35 tasks at once, creating one
large correlational dataset. So, the data is smaller but contains
more precision on what specific pattern is present for the
RNN to learn.

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19Tr
ai

n
in

g
A

cc
u

ra
cy

Number of Loops

Test 1A
Length

Iteration 1

Iteration 2(Length 10,000)

Iteration 3(Length 100)

Iteration 4(Length 1.00-20.00)

Iteration 5 (TR 45)

Iteration 6(Dropped Values)

Iteration 7(Normalized Data)

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

61

Fig 6. Test 1B Training Accuracy

TABLE II. TEST 1B VALIDATION ACCURACY

Iter. 1 Iter. 2 Iter. 3

80% 80% 90%

90% 100% 80%

90% 90% 90%

AVG: 87% AVG: 90% AVG: 87%

C. Test 2A

Immediately after increasing the complexity of the
pattern, the RNN performs drastically better. At most
needing only 12 loops to reach 99% accuracy on training
data(Fig. 5). The validation also proves that the RNN learned
properly on average across all 3 iterations(Table 3). The
RNN only mis-orders one task. Oddly enough when novelty
is the second metric the RNN learns better, but slightly
slower. This is not entirely surprising as length and novelty
have ranges that are capped at 20 and 10 respectively. This
would mean a higher chance of repeat values. When two
tasks have the same value in the metric being focused on the
program returns a zero. Zero usually means task i comes after
task j, but in this case it would mean nothing at all. This
problem explains why iteration 3 took longer than iterations
1 and 2. 12 loops is not considered to be a terrible amount of
time, especially when considering it reached 90% after 7
loops, or when considering it has a nearly perfect validation
score, averaging 97% over 3 attempts.

Fig. 7. Test 2A Training Accuracy

TABLE III. TEST 2A VALIDATION ACCURACY

Iter. 1 Iter. 2 Iter. 3

80% 100% 100%

70% 70% 100%

90% 90% 90%

AVG: 80% AVG: 87% AVG: 97%

D. Test 2B

Test 2B performs slightly worse than expected. Training
accuracy is good across all three iterations(Fig. 6) and when
time remaining is the second metric the validation scores are
acceptable. When novelty comes second it does not perform
so great The validation does worse despite having the best
training score(Table 4). Only missing 2 tasks on average is
not bad, but considering how well test 2A(Table 3) does it is
odd to see test 2B perform poorly. Especially considering the
data is larger for test 2B which makes the overfitting issue
present all the more baffling. It is curious to note that test
1B(Table 2) performs much better than test 2B when testing
validation. While test 1B has slightly lower training scores,
the validation scores are much more consistent and don’t dip
as low as test 2B does on iteration 3.

Fig. 8. Test 2B Training Accuracy

93,5

94

94,5

95

95,5

96

96,5

97

97,5

98

iteration 1 iteration 2 iteration 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Test 1B

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12Tr
ai

n
in

g
A

cc
u

ra
cy

Numbe rof Loops

Test 2A
Length + TimeRemaining

Iteration 1

Iteration 2

Iteration 3(Length+Novelty)

98%

98%

99%

99%

100%

iteration 1 iteration 2 iteration 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Test 2B

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

62

TABLE IV. TEST 2B VALIDATION ACCURACY

Iter. 1 Iter. 2 Iter. 3

90% 80% 70%

90% 80% 80%

100% 90% 80%

AVG: 93% AVG: 83% AVG: 77%

E. Test 3A

Test 3A does amazingly well. It does take longer than test
2A(Fig. 5) when training(Fig. 7), but the results on unseen
data are higher on average(Table 5) than those for test
2A(Table 3). Iteration 3 did take 19 loops to reach the 98%
threshold but remained above 90% starting at loop 9.
Presumably the results on unseen data would have been
similar even if the training broke after 20 loops having not
reached 98%.

Fig. 9. Test 3A Training Accuracy

TABLE V. TEST 3A VALIDATION ACCURACY

Iter. 1 Iter. 2 Iter. 3

100% 90% 90%

100% 80% 90%

90% 80% 90%

AVG: 97% AVG: 83% AVG: 90%

F. Test 3B

Test 3B trained to 99% accuracy all 3 iterations(Fig. 8)
and the performance on unseen data averages the best of all
versions of test B(Table 7), but not drastically better than test
3A which is what it is meant to be compared directly to(Table
6). It may be faster and more accurate marginally, but preset
preferences are not as personalized as ones that are developed
over time as users interact with the system.

Fig. 10. Test 3B Training Accuracy

TABLE VI. TEST 3B VALIDATION ACCURACY

Iter. 1 Iter. 2 Iter. 3

100% 100% 100%

90% 80% 100%

100% 100% 80%

AVG: 97% AVG: 93% AVG: 93%

G. Test 4

Iteration 1 of test 4 caused a crash of the system. The
chart shows that the RNN reached 87% accuracy at loop 17
but crashed before it reached 18(Fig. 9). This caused the
model for that test to be lost. The pattern showed that the
RNN was picking up on the complex logic but was getting
stuck. Continuously bouncing between 80% and 90%
accuracy. Looking at the results from all iterations it is
noticeable that all tests barely break 90% training accuracy.
Upon adjusting the batch size, we see a much faster
convergence to 98% training accuracy, which is also
corroborated by the validation testing(Table 8). Iteration 3
shows that a lower batch size is more important than a higher
epoch count. Iteration 5 further supports this. Despite having
the lowest training accuracy, it has the second highest
validation accuracy, coming second to iteration 4 with the
best training and validation accuracies.

Each of these tests, aside from test 1A(Fig. 3, Table 1),
present training and validation scores that are very high. This
is a very interesting fact to note as the amount of data is
relatively small when compared to other datasets used for
neural networks. It is a well-known rule of thumb that neural
networks perform best when working with very large
amounts of data. It helps to prevent the underfitting problem
[44]. The datasets for this project are shockingly small,
barely breaking even a kilobyte in size. The admirable
performance of the RNN with such a sparse amount of data
is noteworthy when considering previous iterations of
projects concerned with personalized gamification.

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19

Tr
ai

n
in

g
A

cc
u

ra
cy

Numbe rof Loops

Test 3A
Length + TimeRemaining +

Novelty

Iteration 1

Iteration 2

Iteration 3(Length+Novelty+TimeRemaining)

0%

20%

40%

60%

80%

100%

120%

iteration 1 iteration 2: Iteration 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Test 3B

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

63

Fig. 11. Test 4 Training Accuracy

TABLE VII. TEST 4 VALIDATION ACCURACY

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

N/A 90% 60% 90% 90%

N/A 80% 60% 90% 90%

N/A 70% 70% 90% 80%

AVG
: N/A

AVG
: 80%

AVG
: 63%

AVG
: 90%

AVG
: 87%

VI. FUTURE WORK

The results from this project are indicative of the ability
of a RNN to schedule tasks based on learned preferences of
a user. This model was achieved with very little data and
produces great results. With the RNN’s ability to learn
scheduling preferences, future work with this model can be
expanded to other gamification elements. Those elements
should be simple, yet very ingrained into human psychology.
User studies should be conducted with this model to get a
better understanding both of what the model can learn, and
what the model should be asked to learn. Previous
personalized gamification studies often seemed to have the
issue of trying to personalize too much with too little impact.
It seems prudent that future research should focus on finding
a balance. “What aspects need to adapt to the user” and “what
level of personalization is required to boost engagement
levels with the system” are the two questions that have few
concrete answers. Determining what is considered successful
in terms of improved engagement is also a relevant question
to be answered in the future.

In addition to providing better defined parameters for
personalized gamification, further tests should be conducted
with the model created for this project. Test 1A
underperformed drastically. More tests that follow the
procedure of test 4 should be conducted, where the
parameters of the RNN are adjusted rather than just the input

data. In addition, running test 4B is an option to be
considered.

Lastly, it would be prudent to determine how the RNN
handles a drastic change in user preference. Individuals are
usually very set in stone, their preferences unique to them
being rather unchanging. However, circumstances may
change that force a user to adjust how they approach tasks. It
is currently unknown how the RNN presented would handle
a sudden change in the data it is being fed and how quickly it
could learn this new pattern and forget the old one.

VII. CONCLUSION

The works of this project resulted in a RNN model that
could quickly and accurately determine a scheduling
preference and proceed to apply those preferences to unseen
task data. This shows that neural networks are potentially
capable of learning and applying user preferences to any
gamified elements with extreme accuracy. This project also
shows that sparse amounts of data is not necessarily a bad
thing when regarding neural networks. A comparatively
small amount of data was created for this project and the
RNN built and used performed near flawlessly with both
training and validation scores. This showcases the point that
this project was ultimately attempting to prove. Personalized
gamification systems are likely to perform faster and more
accurately the more targeted the game element is. The theory
of personalized gamification is that it should produce far
better results than non-personal systems, but in practice does
not. This work sought to show that perhaps if the focus was
tighter and the system was not trying to personalize every
aspect at once, then it would be able to adapt faster.

REFERENCES

[1] B. Morschheuser, J. Hamari, and A. Maedche, “Cooperation or
competition – When do people contribute more? A field experiment
on gamification of crowdsourcing,” Int. J. Hum.-Comput. Stud., vol.
127, pp. 7–24, Jul. 2019, doi: 10.1016/j.ijhcs.2018.10.001.

[2] A. Rapp, F. Hopfgartner, J. Hamari, C. Linehan, and F. Cena,
“Strengthening gamification studies: Current trends and future
opportunities of gamification research,” Int. J. Hum.-Comput. Stud.,
vol. 127, pp. 1–6, Jul. 2019, doi: 10.1016/j.ijhcs.2018.11.007.

[3] R. Van Roy and B. Zaman, “Unravelling the ambivalent motivational
power of gamification: A basic psychological needs perspective,” Int.
J. Hum.-Comput. Stud., vol. 127, pp. 38–50, Jul. 2019, doi:
10.1016/j.ijhcs.2018.04.009.

[4] F. Faiella and M. Ricciardi, “Gamification and learning: a review of
issues and research,” J. E-Learn. Knowl. Soc., vol. 11, no. 3, Sep.
2015, Accessed: Nov. 19, 2023. [Online]. Available:
https://www.learntechlib.org/p/151920/

[5] D. Ašeriškis and R. Damaševičius, “Gamification Patterns for
Gamification Applications,” Procedia Comput. Sci., vol. 39, pp. 83–
90, Jan. 2014, doi: 10.1016/j.procs.2014.11.013.

[6] M. Passalacqua, P. D. Sylvain Senecal, M. Fredette, L. Nacke, R.
Pellerin, and P.-M. Leger, “Should Gamification be Personalized? A
Self-deterministic Approach,” AIS Trans. Hum.-Comput. Interact.,
vol. 13, no. 3, pp. 265–286, Sep. 2021, doi: 10.17705/1thci.00150.

[7] A. Khakpour and R. Colomo-Palacios, “Convergence of
Gamification and Machine Learning: A Systematic Literature
Review,” Technol. Knowl. Learn., vol. 26, no. 3, pp. 597–636, Sep.
2021, doi: 10.1007/s10758-020-09456-4.

[8] A. Knutas, R. van Roy, T. Hynninen, M. Granato, J. Kasurinen, and
J. Ikonen, “A process for designing algorithm-based personalized
gamification,” Multimed. Tools Appl., vol. 78, no. 10, pp. 13593–
13612, May 2019, doi: 10.1007/s11042-018-6913-5.

[9] University of Osnabrück et al., “Adaptive and Personalized
Gamification Designs: Call for Action and Future Research,” AIS

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19

Tr
ai

n
in

g
A

cc
u

ra
cy

Number of Loops

Complex Logic

Crashed

Batch Size 16

200 Epochs

200 Epochs & Batch Size 16

Batch Size 2

Journal of Game, Game Art and Gamification

Vol. 10, No. 02, 2025

64

Trans. Hum.-Comput. Interact., vol. 13, no. 4, pp. 479–494, Dec.
2021, doi: 10.17705/1thci.00158.

[10] R. Khoshkangini, G. Valetto, A. Marconi, and M. Pistore, “Automatic
generation and recommendation of personalized challenges for
gamification,” User Model. User-Adapt. Interact., vol. 31, no. 1, pp.
1–34, Mar. 2021, doi: 10.1007/s11257-019-09255-2.

[11] E. Nasirzadeh and M. Fathian, “Investigating the effect of
gamification elements on bank customers to personalize gamified
systems,” Int. J. Hum.-Comput. Stud., vol. 143, p. 102469, Nov. 2020,
doi: 10.1016/j.ijhcs.2020.102469.

[12] G. F. Tondello, R. Orji, and L. E. Nacke, “Recommender Systems for
Personalized Gamification,” in Adjunct Publication of the 25th
Conference on User Modeling, Adaptation and Personalization,
Bratislava Slovakia: ACM, Jul. 2017, pp. 425–430. doi:
10.1145/3099023.3099114.

[13] I. Rodríguez, A. Puig, and À. Rodríguez, “Towards Adaptive
Gamification: A Method Using Dynamic Player Profile and a Case
Study,” Appl. Sci., vol. 12, no. 1, Art. no. 1, Jan. 2022, doi:
10.3390/app12010486.

[14] F. Rozi, Y. Rosmansyah, and B. Dabarsyah, “A Systematic Literature
Review on Adaptive Gamification: Components, Methods, and
Frameworks,” in 2019 International Conference on Electrical
Engineering and Informatics (ICEEI), Jul. 2019, pp. 187–190. doi:
10.1109/ICEEI47359.2019.8988857.

[15] S. Suresh Babu and A. Dhakshina Moorthy, “Application of artificial
intelligence in adaptation of gamification in education: A literature
review,” Comput. Appl. Eng. Educ., vol. 32, no. 1, p. e22683, 2024,
doi: 10.1002/cae.22683.

[16] W. S. Sayed et al., “AI-based adaptive personalized content
presentation and exercises navigation for an effective and engaging
E-learning platform,” Multimed. Tools Appl., vol. 82, no. 3, pp. 3303–
3333, Jan. 2023, doi: 10.1007/s11042-022-13076-8.

[17] V. Bellotti, B. Dalal, N. Good, P. Flynn, D. G. Bobrow, and N.
Ducheneaut, “What a to-do: studies of task management towards the
design of a personal task list manager,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Vienna
Austria: ACM, Apr. 2004, pp. 735–742. doi:
10.1145/985692.985785.

[18] L. R. Fournier, E. Coder, C. Kogan, N. Raghunath, E. Taddese, and
D. A. Rosenbaum, “Which task will we choose first? Precrastination
and cognitive load in task ordering,” Atten. Percept. Psychophys., vol.
81, no. 2, pp. 489–503, Feb. 2019, doi: 10.3758/s13414-018-1633-5.

[19] Y. Gil, V. Ratnakar, T. Chklovski, P. Groth, and D. Vrandecic,
“Capturing Common Knowledge about Tasks: Intelligent Assistance
for To-Do Lists,” ACM Trans. Interact. Intell. Syst., vol. 2, no. 3, pp.
1–35, Sep. 2012, doi: 10.1145/2362394.2362397.

[20] A. Shrestha and A. Mahmood, “Review of Deep Learning Algorithms
and Architectures,” IEEE Access, vol. 7, pp. 53040–53065, 2019, doi:
10.1109/ACCESS.2019.2912200.

[21] D. J. Montana, L. Davis, and M. St, “Training Feedforward Neural
Networks Using Genetic Algorithms”.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics,
JMLR Workshop and Conference Proceedings, Mar. 2010, pp. 249–
256. Accessed: Jan. 31, 2024. [Online]. Available:
https://proceedings.mlr.press/v9/glorot10a.html

[23] S. Grossberg, “Recurrent Neural Networks,” Scholarpedia, vol. 8, no.
2, p. 1888, Feb. 2013, doi: 10.4249/scholarpedia.1888.

[24] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent
Advances in Recurrent Neural Networks,” Feb. 22, 2018, arXiv:
arXiv:1801.01078. Accessed: Feb. 05, 2024. [Online]. Available:
http://arxiv.org/abs/1801.01078

[25] J. Collins, J. Sohl-Dickstein, and D. Sussillo, “Capacity and
Trainability in Recurrent Neural Networks,” Mar. 03, 2017, arXiv:
arXiv:1611.09913. doi: 10.48550/arXiv.1611.09913.

[26] C. Blum and K. Socha, “Training feed-forward neural networks with
ant colony optimization: an application to pattern classification,” in
Fifth International Conference on Hybrid Intelligent Systems
(HIS’05), Rio de Janeiro, Brazil: IEEE, 2005, p. 6 pp. doi:
10.1109/ICHIS.2005.104.

[27] R. Kocjančič and J. Zupan, “Application of a Feed-Forward Artificial
Neural Network as a Mapping Device,” J. Chem. Inf. Comput. Sci.,
vol. 37, no. 6, pp. 985–989, Nov. 1997, doi: 10.1021/ci970223h.

[28] A. Y. Shamseldin, A. E. Nasr, and K. M. O’Connor, “Comparison of
different forms of the Multi-layer Feed-Forward Neural Network
method used for river flow forecasting,” Hydrol. Earth Syst. Sci., vol.
6, no. 4, pp. 671–684, Aug. 2002, doi: 10.5194/hess-6-671-2002.

[29] G. Bebis and M. Georgiopoulos, “Feed-forward neural networks,”
IEEE Potentials, vol. 13, no. 4, pp. 27–31, Oct. 1994, doi:
10.1109/45.329294.

[30] F. Li, S. Lang, B. Hong, and T. Reggelin, “A two-stage RNN-based
deep reinforcement learning approach for solving the parallel
machine scheduling problem with due dates and family setups,” J.
Intell. Manuf., vol. 35, no. 3, pp. 1107–1140, Mar. 2024, doi:
10.1007/s10845-023-02094-4.

[31] S. Liu, C. Zhang, and Y. Chen, “Scheduling Optimization of real-time
IOT system based on RNN,” in 2020 International Conference on
Intelligent Computing and Human-Computer Interaction (ICHCI),
Dec. 2020, pp. 249–253. doi: 10.1109/ICHCI51889.2020.00061.

[32] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled
Sampling for Sequence Prediction with Recurrent Neural Networks,”
in Advances in Neural Information Processing Systems, Curran
Associates, Inc., 2015. Accessed: Feb. 05, 2024. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2015/hash/e995f98
d56967d946471af29d7bf99f1-Abstract.html

[33] K. Kamijo and T. Tanigawa, “Stock price pattern recognition-a
recurrent neural network approach,” in 1990 IJCNN International
Joint Conference on Neural Networks, San Diego, CA, USA: IEEE,
1990, pp. 215–221 vol.1. doi: 10.1109/IJCNN.1990.137572.

[34] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to Construct
Deep Recurrent Neural Networks,” Apr. 24, 2014, arXiv:
arXiv:1312.6026. Accessed: Feb. 05, 2024. [Online]. Available:
http://arxiv.org/abs/1312.6026

[35] R. M. Schmidt, “Recurrent Neural Networks (RNNs): A gentle
Introduction and Overview,” Nov. 23, 2019, arXiv:
arXiv:1912.05911. doi: 10.48550/arXiv.1912.05911.

[36] R. Eldan and O. Shamir, “The Power of Depth for Feedforward
Neural Networks”.

[37] A. Arisha, P. Young, and M. E. Baradie, “Job Shop Scheduling
Problem: an Overview”.

[38] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, “Review of job shop
scheduling research and its new perspectives under Industry 4.0,” J.
Intell. Manuf., vol. 30, no. 4, pp. 1809–1830, Apr. 2019, doi:
10.1007/s10845-017-1350-2.

[39] D. J. Hoitomt, P. B. Luh, and K. R. Pattipati, “A practical approach
to job-shop scheduling problems,” IEEE Trans. Robot. Autom., vol.
9, no. 1,pp. 1–13, Feb. 1993, doi: 10.1109/70.210791.

[40] A. Jones, L. C. Rabelo, and A. T. Sharawi, “Survey of Job Shop
Scheduling Techniques,” in Wiley Encyclopedia of Electrical and
Electronics Engineering, 1st ed., J. G. Webster, Ed., Wiley, 1999. doi:
10.1002/047134608X.W3352.

[41] A. S. Jain and S. Meeran, “A STATE-OF-THE-ART REVIEW OF
JOB-SHOP SCHEDULING TECHNIQUES”.

[42] T. M. Willems and J. E. Rooda, “Neural networks for job-shop
scheduling,” Control Eng. Pract., vol. 2, no. 1, pp. 31–39, Feb. 1994,
doi: 10.1016/0967-0661(94)90571-1.

[43] G. R. Weckman, C. V. Ganduri, and D. A. Koonce, “A neural network
job-shop scheduler,” J. Intell. Manuf., vol. 19, no. 2, pp. 191–201,
Apr. 2008, doi: 10.1007/s10845-008-0073-9.

[44] J. G. A. Barbedo, “Impact of dataset size and variety on the
effectiveness of deep learning and transfer learning for plant disease
classification,”Comput. Electron. Agric., vol. 153, pp. 46–53, Oct.
2018, doi: 10.1016/j.compag.2018.08.013.

