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Abstract – Personalized gamification is a practice that is 

relatively well defined and improves the effectiveness of a 

gamified system. However, in practical application the 

improvement is not as significant as expected. The process of 

personalizing a gamified system is taxing and relatively 

unfeasible, with far too many aspects to consider to produce an 

effective result. Artificial intelligence, and neural networks, can 

step in to alleviate much of the work, but even still results are 

inconsistent at best. This project seeks to remove this 

inconsistency by attempting to personalize only one aspect of a 

gamified system, rather than the entire system as a whole.  By 

attempting the personalization problem in this manner the 

amount of individual characteristics to consider is reduced 

dramatically, thus allowing for a neural network to more quickly 

and accurately determine personalization characteristics and 

apply them for any given user. Results show that an RNN can 

detect preference patterns and apply user preferences to a 

scheduling system. These results were produced with little run 

time and a more sparse dataset than normally expected for a 

neural network, which showcases the novel fact that detecting 

user preference does not require large datasets.  

Keywords – gamification, personalized, adaptive, dynamic 

adaptive, neural network 

I. INTRODUCTION 

Gamification is a field within computer science that is 
directed toward the modification of system design to mimic 
those of gaming entertainment systems.  It is the process of 
adding game-like elements to a non-game setting. The 
purpose of this approach to design is to increase user 
interaction with the system in question [1] [2] [3]. There is 
no one single way to approach the design of a gamified 
system. Despite this lack of structure to the design approach, 
there are common factors that are considered when adding 
game-like elements [4] [5]. While the lack of rigidity gives 
developers freedom, that freedom comes at the expense of 
producing a universally effective product. Gamification 
motivates the user by encouraging interaction with the 
system; however, this benefit is directly proportional to the 
user’s willingness to interact with the system. This issue is 
what limits the effectiveness of gamification [6] [7]. The 
main issue stems not from the design, but from the users 
directly. Everyone has a different psychological profile; they 
do things for different reasons as they have unique 
preferences. Modern gamified systems are designed to work 
moderately well for everyone, these systems are designed to 

be enjoyable to as many users as possible. This type of design 
and implementation often only leads to moderate 
improvement among the users, leaving gamification in a 
situation where more effort is put into creating the system for 
only a slight to middling perceived benefit. 

This conundrum created the sub-field of personalized 
gamification. Personalized gamification seeks to increase 
engagement and effectiveness of gamified systems by 
designing the system for a specific user. This design shift of 
gamification emerged because gamified systems are 
designed with a one size that fits all approach. An un-
personalized gamified system is rigid and unchanging. It will 
function exactly how it was built to do forever, regardless of 
user input and preference. This is usually not a problem as 
gamification as a study always shows results that are 
indicative of an improvement. The problem is that the 
improvements can sometimes be minimal. Personalized 
gamification design alleviates this by creating a system that 
responds to data and allows for a shift in its processes that 
make it more desirable to the user. Research shows that 
gamified systems that contain elements that users respond 
positively to produce better results than those that don’t. 
However, there is a glaring issue when considering the 
design and development of a personalized system.  

The issue with these types of systems is not the data 
collection, but the ability to use that data meaningfully. This 
process would be very painstaking as well as economically 
unfeasible. Each time more data is gathered and new 
personalization strategies emerge, the design and 
implementation work would multiply exponentially [8]. 
Designing a system for one user, or type of users is less of an 
issue. The real problem is that systems are often designed for 
billions of users, and the process of personalizing that system 
for each of the expected users is not feasible. This would 
require an understanding of all the possible user 
characteristics and contextual characteristics. This issue is 
what keeps personalized gamified systems from being more 
mainstream. [6] [7] 

The proposed fix that research considers is adaptive 
gamification. This is where systems are designed to collect 
data as they are used and, by using artificial intelligence, 
respond to that data by modifying the system based on the 
collected data. A sort of middle ground between a normal 
system and a personalized one. Adaptive gamified systems 
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are automated to adjust dynamically as they are being used. 
These types of systems are more effective than rigid systems, 
but not as effective as a personalized one. Research was 
conducted to see if the gap between personalized and 
adaptive gamification could be widened; instead of using AI 
to merely adapt the system, if it could be used to personalize 
them. [9] 

This project selects one gamification element to 
personalize, scheduling priority, and seeks to prove that 
automation of personalization is possible. Adaptation of a 
system automatically has been done and has been shown to 
work well. The issue is that adaptive systems react at a large 
scale to all the data collected from across its entire user base. 
Rather than attempting to personalize an entire system, this 
project attempts to show that a single type of gamification 
element, in this case task scheduling, can be personalized 
automatically. The hypothesis is if this process can be 
applied to one gamification element it can be applied to any 
of them. If that is true, then all those elements can be 
personalized and combined to produce a resulting system that 
is tailored at the user level rather than a user base level. 
Multiple tests will be run with increasing levels of element 
complexity. Both human tests and AI generated tests will be 
conducted to determine if there is a noticeable difference in 
neural network learning speed and accuracy among data that 
is procedurally generated versus data that is created by 
human input, which is expected to be more raw and less 
uniform. This study differs in a novel way from previous 
personalized gamification studies in that it focuses on the 
results of a neural network and its ability to properly 
personalize a system, rather than the results of a gamification 
user study.  

II. RELATED WORKS 

A. Justification for Researching Personalized 

Gamification 

Previous research done on gamification is widespread 
and a well-documented and studied field of computer 
science. Personalization is a newer field within gamification 
research, and the application of artificial intelligence is even 
newer still. The need for continued research for personalized 
gamification lies in its core problem. There is a very large 
overhead cost for creating a personalized gamified system. 
Players crave novelty, they will get bored doing the same 
challenge day in and out. Developers experience a large 
amount of pressure attempting to create endless amounts of 
challenges and adapting existing games based on feedback. 
[10]. As mentioned before, the common idea presented to fix 
this issue is automation. This fix however belies another 
question, that being which part to automate, and how to 
automate it. 

Creating a system that dynamically personalizes while a 
player, or user, interacts with it is no easy feat, again going 
back to the core problem of personalization. Even an 
automated system still needs to be developed such that it can 
adapt to all possible user characteristics. Personalization 
when done properly needs to be based on player psychology 
and aligning player types to specific game elements. A time-
consuming process to undertake and one that presents an 
issue with personalization, as well as research on the concept. 

A large motivation for gamification research is enhancing 
the learning process for students.  As a result, a lot of 
personalized gamification studies are also directed toward 
student’s learning. However, the psychological aspects of 
learning are imposing and difficult to personalize effectively, 
and the results are usually lackluster. There was a study done 
that addresses this issue by focusing on a smaller scale 
problem. This study produced very good results compared to 
non-personalized methods which could indicate that many 
current studies may not be producing realistic results for how 
effective personalized gamified models can be [11]. 

Another break from traditional personalization research 
comes from a project that  presented an approach that did not 
simply personalize a gamified system, but rather a 
recommender system that could be applied to the game. This 
study continued to discuss the importance of player 
psychology and the alignment of a player’s personality to 
specific game elements, and much like the project referenced 
above, narrowed in on specific elements of the user to focus 
on, as well as game elements that should be personalized first 
[12]. It was shown that not every aspect of the system needs 
to be personalized, only certain aspects such as activities, 
gameful elements, and persuasive strategies. These studies 
help to show that personalized gamification may not require 
as much overhead as people believe and that the scale of what 
needs to be personalized may be smaller than anticipated. 

B. Personalized Versus Adaptive Gamification 

The improvement of gamification extends past the 
personalization approach. As mentioned before, adaptive 
gamification is another approach that seeks to tailor a 
gamified system for the user. However, there are some 
downsides to this approach. The most glaring of them is that 
the adaptation process is done at the beginning of the design 
process. This is done by means of surveying the prospective 
users and determining what their player type is. From that 
result, gamified systems are then tailored to the player. 
However, this approach is very static and does not allow for 
changes as the players use the system[13]. Data is best 
gathered from use rather than from surveys alone. People can 
misunderstand questions and give inaccurate results. Rather 
than simply making an adaptive system, the better approach 
is to make a dynamically adaptive system, which is one that 
learns and changes to better suit the user as they interact with 
it. Another such term for this type of design is also referred 
to as adaptable [14]. This crossing of terms is one of the 
reasons that research into this field is so difficult. The same 
term is often said to describe similar ideas, but does not have 
one concrete, agreed upon definition. As it stands, adaptive 
gamification is the style where features are created to fit 
expected player types. Personalized gamification is 
seemingly the same as dynamic adaptive gamification, or 
adaptable gamification. The style in which users can affect 
the system directly to personalize it themselves. For the 
purposes of this paper, personalized gamification and 
dynamically adaptive gamified system will be used 
interchangeably.  

C. AI and Gamification 

The dynamic approach to personalization is often done 
through artificial intelligence. Methods are created to track 
user progress through the game and compare what is being 
done to preference tables that are created at the beginning of 
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the design process. As player scores are updated, dynamic 
systems adjust to present specific preset elements that are 
likely to be desirable based on where the user score falls in 
terms of player type [15]. This approach does still suffer from 
the static approach that plain adaptive models do. Players are 
sorted into their player type from the beginning based on 
preliminary survey results. Once sorted it can be difficult to 
adjust one’s scores enough to reach a presentation style that 
is truly personalized, especially if the original survey results 
happened to be incorrect. Other approaches use deep learning 
to personalize the gamified learning system from the ground 
up [16]. All users start with the same system, but as the users 
interact with it, multiple aspects of the system adapt to their 
preference and cognitive level. The adaptation style is 
notable as well because only select aspects of the system 
adjust. This relates back to the notion that research into 
adaptable systems produces mediocre results because too 
much is being attempted at once. This study adapts very few 
features: the presentation style, the ability to skip lessons, and 
the adding of hints and extra attempts.  This study showed 
great results by reducing time spent using the system and 
increasing the scores of the students versus typical results for 
gamified learning systems. This brings up two crucial 
questions; how much a system needs to change to become 
personalized and exactly how personalized a system needs to 
become to produce better results. 

 The questions above drove this project to be smaller 
scale than most other prominent research involving 
dynamically adapting gamification systems. To determine an 
answer, this project focused on only a single aspect of 
gamification, task ordering. That a to-do list is considered a 
gamification element is not common sense to most 
individuals. Most games, however, have some sort of order 
applied to them. Whether it be linear through a story mode 
that has to be completed in order, or as the game progresses 
players can be given two or more paths to determine their 
own adventure. In the same way that people order their daily 
tasks, games give players a task structure as well. This 
feature seemed a proper element to focus on because people 
have an innate capacity to order tasks. Each individual has 
their own method for untangling a messy workload and 
determine what, for them, is the best and most comfortable 
way to approach them [17]. There are a variety of ways in 
which people could choose to order tasks: due date, priority, 
how long the task will take, and even by cognitive load [18]. 
Despite the innate wanting to have an ordered list of tasks, 
people can have a weakness for organizing and managing 
those to-do lists. New tasks can be added on after the list is 
made which leads to the need and creation of a separate list. 
Over time things become cluttered and unmanageable which 
defeats the purpose. In a  previous study, it was determined 
that an automated and intelligent to-do assistant can help 
users with the process of breaking down a list of tasks and 
helping them create and manage their list of tasks [19]. This 
helps to show that the automation of task ordering is both 
beneficial and not entirely unfounded. A perfect model 
simply has yet to be created. Bridging this concept into 
personalized gamification seemed the most logical approach 
to take when considering how to further what could be 
considered a field stuck in a rut. Dynamic adaptive systems 
should work better, but the results are often just slightly 
better than normal. 

 Personalized gamification research suffers from doing 
too much at once. By focusing on just a single attribute of 
personalization, it is plausible that a higher degree of 
accuracy, when concerning personalization levels, can be 
achieved. By choosing an attribute that is core to human 
personalities, a simple but effective system could be 
produced. 

D. Using Neural Networks for Gamification 

Automating a gamified system has been the common 
approach to personalizing systems. The breadth of the 
complexity the automation takes varies. There are many 
factors to take into consideration. It makes logical sense that 
a neural network of some kind should be utilized. Projects 
done previously that directly utilize neural networks solidify 
this [16]. A neural network is a technique in machine learning 
that was derived from and built to resemble the human 
nervous system, which in of itself is a marvel of engineering, 
biological as it may be. Neural networks are made up of units 
that are organized into different layers: input, hidden, and 
output. Each unit in a layer is connected to a different unit 
within a different layer and each of those connections has a 
weight. Inputs are multiplied by the weights at each unit and 
undergo transformations. The output of those transformation 
functions is then fed into the next layer of units. When there 
are no more layers left, the solutions of the problem is 
considered finished [20]. Neural Networks can be applied to 
a variety of problems such as pattern recognition, 
classification, clustering, dimensionality reduction, 
computer vision, natural language processing, regression, 
predictive analysis, scheduling, and many more. Neural 
networks can also be broken into five different types of 
networks. Feedforward neural networks, recurrent neural 
networks, radial bias function neural network, Kohonen self-
organizing neural network, and modular neural network. 
Each of these have specific advantages over the others and 
with enough effort can all be used to solve essentially the 
same problem with varying degrees of success. The nature of 
the problem at hand with this project leads to the conclusion 
that pattern recognition and the ability to make predictions 
on future occurrences would be either necessary or 
beneficial. Research and past implementations indicate that 
feedforward and recurrent neural networks are the two 
strongest candidates for this project. 

Feedforward neural networks (FFNN) are a type of 
neural network where information only flows in one 
direction, from input to output. Recurrent neural networks 
(RNN) differ in that the units form a cycle. Output from one 
layer becomes the input to another allowing for RNNs to 
have memory of previous states and use that memory to 
influence the current output [21], [22], [23], [24], [25]. As 
previously stated, neural networks have many applications to 
various problems. Past applications of FFNNs include 
pattern classification, data mapping, forecasting, and have 
even been used to determine the optimal size that a FFNN 
should have for specific problems before diminishing returns 
[26], [27], [28], [29], [30], [31]. Applications of RNNs 
include sequence prediction, stock market prediction, 
pattern-shape recognition, speech recognition, language 
modeling, and scheduling problems [32], [33], [34], [35]. 
Provided what is believed to be necessary for the completion 
of this project and based on the applications above, FFNNs 
and RNNs are the two types of networks that are to be used 
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for testing. Particularly the ability of RNNs to process 
sequential data and learn patterns and dependencies. This 
makes them powerful tools for determining orders of 
operations. 

Despite the difference between FFNNs and RNNs there 
is a common similarity between these two, and the other 
types, of neural networks. That being the size of the network. 
A general rule of thumb for neural networks is to have them 
be relatively large. This is required to prevent overfitting and 
reduce generalization on new, unseen data. Depth and width 
are the common terms for the size of a neural network, depth 
being the number of layers and width being the number of 
neurons per layer. Commonly, depth is the more relevant 
factor. It is better to be narrow and deep than shallow and 
wide [36]. It is also worth noting that the applications cited 
above have little to do with task ordering, save for the ability 
of neural networks to perform scheduling operations. 

E. Personalized Gamification and Job-Shop Scheduling 

Scheduling as a problem both in computer science and 
industry is approached as an optimization problem. The job-
shop scheduling problem is a quintessential example of this, 
where there are jobs to be completed, and they have 
prescribed numbers of operations that can only be done by a 
dedicated machine. The goal is to minimize the function of 
job completion times such that no two operations are ever 
done by the same machine at any given moment [37], [38], 
[39]. In the past, this problem was solved by human experts 
alone. The introduction of Ai agents and the implementation 
of neural network schedulers opens many possibilities for 
other practical approaches to solve the job-shop problem 
[40], [41], [42]. The application of neural networks to the 
solving of the job-shop problem not only performs better, but 
also increases the scale of problems that can be feasibly 
solved [43]. Scheduling problems as they have been 
approached before are aimed at business and manufacturing, 
minimizing their time and cost to make a profit. 
Minimization is an optimization problem. This is not the 
problem that is being addressed in this project. Research has 
shown that neural networks are powerful tools capable of 
solving complex problems by learning and acting in a similar 
manner to how our brains function. The human mind, 
however, is more than just logic and optimal solutions. 
Emotion, personal bias, and preferences impact one’s 
decision-making process. The goal of this project is to train 
a neural network to recognize those preferences and tailor a 
system to that person. By only focusing on one aspect of 
preference, task organization, it is believed that the system 
will be able to learn quickly and accurately. Based on the 
applications cited above, FFNNs and RNNs make the best 
candidates to work with. The largest differences between this 
project and what has been done before are the hyper focus on 
one user preference/game element and the use of a scheduler 
that does not seek an optimal solution, but rather a preferred 
one. 

III. METHODOLOGY 

To test and prove that machine learning can be used for 
the purposes of creating a personalized schedule for users’ 
data will be required. Data is created in one of two ways. The 
first is by means of self-generating data and storing it in a file 
to be sent to the neural network later. The second is 
generating the data as it is needed, but in smaller amounts at 

a time. These two types of data generation are important as 
one represents how neural networks often see data, in large 
amounts, and the other mimics a user interacting with the 
system during their use of it. All the data is formatted in the 
same way regardless of the size of the pool. Each data entry 
contains 5 separate metrics that represent factors individuals 
are likely to consider when ordering tasks. The 5 metrics to 
be used include: time remaining, task novelty, priority level, 
task length, and job code. This data represents what will 
become X when splitting the data into training and testing 
sets. The Y value is created by taking each point of data and 
comparing it to each other point in the same set. In the case 
of 10 tasks there would then be 100 data points that represent 
each task being compared to all others. The Y value will be 
either a 0 or 1 depending on if task i comes before or after 
task j. The criterion for ordering varies, but is always 
consistent for any specific test. The resulting data is then 
placed into pairs of inputs with a single output. Once the data 
is created, it is split into training and testing sets. 

 

Fig. 1. Example of input data 

 

Fig. 2. Example of Data Flow to Output 
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In addition to requiring data, neural networks also need 
to be created. The data being sequential in nature indicates 
that an RNN is the most correct choice. Preliminary testing 
had FFNN fail to produce acceptable results. This is due to 
the nature of the data format. FFNNs when considering 
binary outputs take two inputs and produce a single output. 
In a normal case this would have functioned well. The issue 
with the shape of the data being input is that each X has 5 
subpoints. This essentially means there are 10 inputs for a 
single output. It is assumed that this is the reason FFNN was 
unable to produce an acceptable model. Due to the form of 
the data essentially containing 10 inputs the RNN is going to 
be set up with an input size of 10 and will have a single 
hidden layer with a size of 16. The output size is 1 for the 
purpose of binary classification. The goal is to place one task 
either before or after the other by outputting either a 1 or 0. 
The batch size is set to 32 to strike a balance between 
efficiency and learning ability. The epoch size will be 100 for 
the same reasons. The RNN needs to be able to detect and 
learn the patterns in the training data. The learning rate will 
be set to .001 to allow for gradual updates to the weights of 
the RNN. 

After a trained model is produced, its training accuracy is 
calculated. Should the value be sufficient the model is then 
shown new data. This new data is created exactly the same 
as training data but always contains only 10 tasks. The newly 
generated data is sent into an insertion sort algorithm. Within 
this algorithm, the trained RNN will sort the entire set of 10 
tasks by producing a 1 or 0. That value is used to gradually 
sort the new data. Once finished, the data sorted by the RNN 
is then checked by hand to determine how many of the tasks 
were sorted properly. This is done by comparing what the 
RNN produced against the true order the tasks should have 
had. Each task in the incorrect position is considered ignored 
and the validation accuracy is reduced by 10 percent. The 
resulting score represents the validation accuracy of the 
RNN. 

IV. TESTING PROCEDURE 

The process of testing the RNN is broken into two parts, 
A and B. Test A is meant to replicate the scenario in which a 
user would be interacting with a gamified system that is 
attempting to personalize as they interact with it. Test B more 
closely mimics adaptive gamification in which a user would 
provide details about their preferences beforehand and the 
system would modify itself from the beginning rather than 
gradually over time. 

The process of performing test A begins with generating 
data. 10 tasks are created with 5 metrics that are randomized 
between set ranges. Time remaining ranges from 1 through 
365. Priority, novelty, and job code have ranges from 1 
through 10. Length has a range from 1 to 20. After the data 
is properly generated and shaped, the RNN is run through the 
training process. After 100 epochs the training accuracy of 
the RNN is determined. If the accuracy is lower than 98%, 
new data is randomly generated in the exact same manner as 
before, though the values of the task metrics will be different. 
This new data is then added to the original to create a larger 
set for the RNN to use for training. This process simulates 
what would happen if a user were interacting with this 
system, adding new preference data for the RNN to work 
with while retaining the data from the previous interaction. 

With the new data added, the RNN is completely 
retrained using the larger amount of information available to 
it. This process repeats until the training accuracy reaches 
98% or higher, or until 20 iterations have been run. If the 
RNN does not reach 98% accuracy after 20 loops, the 
accuracy it currently attained will be used for validation. The 
validation process is conducted 3 times with a single trained 
model. This is done to ensure the RNN is not producing 
correct values by pure happenstance and correctly guessing 
how tasks should be sorted but genuinely learned the pattern 
that was present in the data. The 3 values are then averaged 
and become the final value for that iteration of the current 
test. Once validation is completed, the entire training process 
is conducted again 2 more times. This is to ensure that the 
RNN is consistently capable of learning preference patterns. 

 

Fig. 3. Test A Flowchart 

Test B follows a similar process to test A. The biggest 
difference is that test B does not use randomly generated 
data, but rather a stockpile of 35 tasks. Those 35 tasks are 
ordered using the same logic as those from test A, but the 
outcome presents the RNN with over 1200 points of 
comparative data as opposed to 100. This is because a single 
task is compared with 34 others instead of 9, which gives the 
RNN far more correlational information to work with. Even 
as test A loops and the dataset grows larger, the data is self-
contained every 10 tasks. Task 1 is never compared to task 
14 because they were created and ordered at different times. 
Test A was designed this way because a user, after getting a 
new set of tasks, would not go back and consider previous 
work they had done. 
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With the data for test B formatted, it is then sent to the 
RNN for training. Training for test B is not repeated until 
98% accuracy is reached, but instead only runs once. The 
validation process is conducted 3 times and averaged 3 times, 
just as test A. The last difference is that test B is not run 3 
times. It is meant to represent preset data inputs, to show the 
difference between personalized gamification and adaptive 
gamification.  

 

Fig. 4. Test B Flowchart 

A. Test 1 

Test 1 uses the simplest method of ordering logic. It only 
focuses on one of the 5 metrics, in this case, task length. If 
the length of task i is less than that of task j, the resulting 
value for that pair will be 1, otherwise, the value returned is 
0. RNNs can often have trouble with patterns that are 
extremely simple, especially when the dataset is small. For 
this reason, test 1A, rather than being run 3 times with the 
same parameters on the training data, it has seven different 
iterations where the training data varies between each. Each 
of these iterations made changes to the input data. The first 
iteration used data that was generated using the prescribed 
values, serving as a control test. 

Iteration 2 had the values of length changed to range 
between 1-10,000. This was done to determine if 
performance was low because too many of the values were 
the same in the length metric. The goal was to reduce the 
chance of repeat values. Iteration 3 followed the same logic 
as the one before it but only ranged from 1-100. Iteration 2 
performed poorly and the cause could have been due to the 

values in the length field being too varied from the other 4 
metrics. Iteration 4 adjusts the value range for length to 1.00-
20.00. This strikes a balance between 2 and 3 where there are 
thousands of possible values, but they will not be drastically 
different than the other metric values, which would reduce 
skewing of the model. Iteration 5 expands on this by reducing 
the time remaining to 45 from 365. Iteration 6 dropped all 
metrics except for length while iteration 7 normalized the 
values of all 5 metrics.  

B. Test 2 

Test 2 adds a second metric for calculating order, that 
being time remaining. In the case that two tasks share the 
same length, time remaining is used to determine which 
should come first amongst the two. Data generated using this 
logic was iterated upon two times. The third iteration changes 
the second metric to novelty as opposed to time remaining. 
This was because time remaining, having such a large range 
of possible values meant that no two tasks in groups of 10 
ever had the same values. It was believed that perhaps the 
RNN was detecting time remaining as the primary metric for 
ordering instead of using it as a secondary one. 

C. Test 3 

Test 3 expands on the idea of test 2 and adds a third metric 
to be considered when ordering. For iteration 1 and 2 that 
metric was novelty. Iteration 3 switches the position of time 
remaining and novelty as the second and third metric for 
ordering. The logic for this swap follows that of test 2. Time 
remaining is likely never going to have repeat values across 
10 tasks. This would mean that the third metric for ordering 
was never reached. To ensure that the RNN can detect 
multiple levels of preference, novelty was made to be the 
second metric. Length having a range of 1 through 20 and 
novelty being from 1 to 10 means there is a much higher 
likelihood for there to be repeat values. In the case that there 
is, time remaining would be useful as a third metric. 

D. Test 4 (Complex Sorting logic) 

The fourth test to be conducted uses a much more 
complex sorting logic than tests 1, 2, and 3. Relatively 
speaking they have simple logic for sorting tasks, only using 
less than or greater than operators to determine order. To test 
the RNN’s ability to learn highly complex patterns, test 4 
orders its data in a manner that attempts to confuse the RNN. 

Data for test 4 is ordered by first looking at the priority of 
2 tasks. If the first task has a priority of 8 or higher and the 
other does not, then that task comes first. If both tasks have a 
priority of 8 or higher, the one with the higher priority goes 
first. Should both tasks have the same priority that is either 8 
or higher, or if both tasks have a priority lower than 8, then 
time remaining is used to determine which should come first. 
This ordering schematic, while still checking if some values 
are greater than others, adds extra layers to that comparison, 
serving to better simulate how an actual person might order 
their tasks. 

Just as with test 1, test 4 has more than 3 iterations and 
each iteration makes changes to parameters rather than 
simply repeating for consistency evaluation. The difference 
between this and test 1 is that rather than adjusting the 
training data, adjustments were made to the parameters of the 
RNN itself. The first iteration serves as the control test where 
no modifications are made. Iteration 2 sets the batch size to 
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16 rather than 32. Iteration 3 only changes the epoch count, 
raising it to 200. Iteration 4 combines the changes of 
iterations 2 and 3 by dropping the batch size to 16 and 
increasing the epoch count to 200. The final iteration checks 
to see what happens when the batch size is 2. Test 4 also does 
not run a test B. Being created to mimic complex human 
preferences it seemed unnecessary to run a test designed to 
work like a preference setting rather than a dynamic learning 
model. 

V. RESULTS AND ANALYSIS 

A. Test 1A 

Test 1A produces rather perplexing results(Fig. 3). It was 
presumed that such a simple pattern would be easily 
recognizable. Multiple conclusions can be drawn from these 
results. One such is that the pattern is too simple for such a 
large input size. 5 metrics for 2 tasks are given. Asking a 
RNN to automatically draw a conclusion from a large input 
that only uses a fraction of it may be too difficult. However, 
iteration 6 dropped the impertinent values to zero, and while 
that test does have the highest training accuracy it still has 
low validation(Table 1). This leads to a conclusion that the 
shape and size of the data is producing too much noise for 
the RNN to filter out and perhaps requires that the irrelevant 
columns of data be removed completely. It is clear here that 
for this preference pattern, there is a large degree of 
underfitting. This leads to the assumption that the RNN itself 
may need to be modified to accommodate learning for this 
test, as the input data was manipulated in many ways to 
alleviate the accuracy problems. Under most circumstances, 
validation is to be run 3 times per iteration to determine if the 
trained model is consistent with its ordering skills. With such 
low values of accuracy being returned, it was deemed 
unnecessary to check for consistency. The only two that had 
validation run 3 times were iterations 1 and 7 as those are the 
two that likely had the highest chance of performing well, 
though the results prove otherwise. 

 

Fig. 5. Test 1A Training Accuracy 

TABLE I. TEST 1A VALIDATION ACCURACY 

Iter. 1 Iter. 2  Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7 

30% 20% 10% 50% 20% 40% 40% 

50% N/A N/A N/A N/A N/A 50% 

50% N/A N/A N/A N/A N/A 40% 

A
VG: 
43% 

A
VG: 
20% 

A
VG: 
10% 

A
VG: 
50% 

A
VG: 
20% 

A
VG: 
40% 

A
VG: 
43% 

B. Test 1B 

Test 1B performs much better than test 1A for training 
accuracy (Fig. 3) and validation accuracy(Table 1). Having 
training accuracy, no lower than 95 across all 3 
iterations(Fig. 4) and having a validation accuracy close to 
those values on average for each of those iterations (Table 2). 
This is indicative of one of the generic fixes for underfitting, 
an issue seen from test 1A. That fix being to give the RNN 
more data to work with. Test A technically contains more 
comparisons after a few loops. The difference is the amount 
of correlation between all the data. Test A only compares 
groups of 10 tasks at a time, meaning the data is more 
separated. Test B compares 35 tasks at once, creating one 
large correlational dataset. So, the data is smaller but contains 
more precision on what specific pattern is present for the 
RNN to learn. 
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Fig 6. Test 1B Training Accuracy 

TABLE II. TEST 1B VALIDATION ACCURACY 

Iter. 1  Iter. 2 Iter. 3 

80% 80% 90% 

90% 100% 80% 

90% 90% 90% 

AVG: 87% AVG: 90% AVG: 87% 

C. Test 2A 

Immediately after increasing the complexity of the 
pattern, the RNN performs drastically better. At most 
needing only 12 loops to reach 99% accuracy on training 
data(Fig. 5). The validation also proves that the RNN learned 
properly on average across all 3 iterations(Table 3). The 
RNN only mis-orders one task. Oddly enough when novelty 
is the second metric the RNN learns better, but slightly 
slower. This is not entirely surprising as length and novelty 
have ranges that are capped at 20 and 10 respectively. This 
would mean a higher chance of repeat values. When two 
tasks have the same value in the metric being focused on the 
program returns a zero. Zero usually means task i comes after 
task j, but in this case it would mean nothing at all. This 
problem explains why iteration 3 took longer than iterations 
1 and 2. 12 loops is not considered to be a terrible amount of 
time, especially when considering it reached 90% after 7 
loops, or when considering it has a nearly perfect validation 
score, averaging 97% over 3 attempts. 

 

 

 

Fig. 7. Test 2A Training Accuracy 

TABLE III. TEST 2A VALIDATION ACCURACY 

Iter. 1 Iter. 2 Iter. 3 

80% 100% 100% 

70% 70% 100% 

90% 90% 90% 

AVG: 80% AVG: 87% AVG: 97% 

D. Test 2B 

Test 2B performs slightly worse than expected. Training 
accuracy is good across all three iterations(Fig. 6) and when 
time remaining is the second metric the validation scores are 
acceptable. When novelty comes second it does not perform 
so great The validation does worse despite having the best 
training score(Table 4). Only missing 2 tasks on average is 
not bad, but considering how well test 2A(Table 3) does it is 
odd to see test 2B perform poorly. Especially considering the 
data is larger for test 2B which makes the overfitting issue 
present all the more baffling. It is curious to note that test 
1B(Table 2) performs much better than test 2B when testing 
validation. While test 1B has slightly lower training scores, 
the validation scores are much more consistent and don’t dip 
as low as test 2B does on iteration 3. 

 

Fig. 8. Test 2B Training Accuracy 
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TABLE IV. TEST 2B VALIDATION ACCURACY 

Iter. 1 Iter. 2 Iter. 3 

90% 80% 70% 

90% 80% 80% 

100% 90% 80% 

AVG: 93% AVG: 83% AVG: 77% 

E. Test 3A 

Test 3A does amazingly well. It does take longer than test 
2A(Fig. 5) when training(Fig. 7), but the results on unseen 
data are higher on average(Table 5) than those for test 
2A(Table 3). Iteration 3 did take 19 loops to reach the 98% 
threshold but remained above 90% starting at loop 9. 
Presumably the results on unseen data would have been 
similar even if the training broke after 20 loops having not 
reached 98%. 

 

Fig. 9. Test 3A Training Accuracy 

TABLE V. TEST 3A VALIDATION ACCURACY 

Iter. 1 Iter. 2 Iter. 3 

100% 90% 90% 

100% 80% 90% 

90% 80% 90% 

AVG: 97% AVG: 83% AVG: 90% 

F. Test 3B 

Test 3B trained to 99% accuracy all 3 iterations(Fig. 8) 
and the performance on unseen data averages the best of all 
versions of test B(Table 7), but not drastically better than test 
3A which is what it is meant to be compared directly to(Table 
6). It may be faster and more accurate marginally, but preset 
preferences are not as personalized as ones that are developed 
over time as users interact with the system. 

 

 

Fig. 10. Test 3B Training Accuracy 

TABLE VI. TEST 3B VALIDATION ACCURACY 

Iter. 1 Iter. 2 Iter. 3 

100% 100% 100% 

90% 80% 100% 

100% 100% 80% 

AVG: 97% AVG: 93% AVG: 93% 

G. Test 4 

Iteration 1 of test 4 caused a crash of the system. The 
chart shows that the RNN reached 87% accuracy at loop 17 
but crashed before it reached 18(Fig. 9). This caused the 
model for that test to be lost. The pattern showed that the 
RNN was picking up on the complex logic but was getting 
stuck. Continuously bouncing between 80% and 90% 
accuracy. Looking at the results from all iterations it is 
noticeable that all tests barely break 90% training accuracy. 
Upon adjusting the batch size, we see a much faster 
convergence to 98% training accuracy, which is also 
corroborated by the validation testing(Table 8). Iteration 3 
shows that a lower batch size is more important than a higher 
epoch count. Iteration 5 further supports this. Despite having 
the lowest training accuracy, it has the second highest 
validation accuracy, coming second to iteration 4 with the 
best training and validation accuracies. 

Each of these tests, aside from test 1A(Fig. 3, Table 1), 
present training and validation scores that are very high. This 
is a very interesting fact to note as the amount of data is 
relatively small when compared to other datasets used for 
neural networks. It is a well-known rule of thumb that neural 
networks perform best when working with very large 
amounts of data. It helps to prevent the underfitting problem 
[44]. The datasets for this project are shockingly small, 
barely breaking even a kilobyte in size. The admirable 
performance of the RNN with such a sparse amount of data 
is noteworthy when considering previous iterations of 
projects concerned with personalized gamification. 
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Fig. 11. Test 4 Training Accuracy 

TABLE VII. TEST 4 VALIDATION ACCURACY 

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 

N/A 90% 60% 90% 90% 

N/A 80% 60% 90% 90% 

N/A 70% 70% 90% 80% 

AVG
: N/A 

AVG
: 80% 

AVG
: 63% 

AVG
: 90% 

AVG
: 87% 

VI. FUTURE WORK 

The results from this project are indicative of the ability 
of a RNN to schedule tasks based on learned preferences of 
a user. This model was achieved with very little data and 
produces great results. With the RNN’s ability to learn 
scheduling preferences, future work with this model can be 
expanded to other gamification elements. Those elements 
should be simple, yet very ingrained into human psychology. 
User studies should be conducted with this model to get a 
better understanding both of what the model can learn, and 
what the model should be asked to learn. Previous 
personalized gamification studies often seemed to have the 
issue of trying to personalize too much with too little impact. 
It seems prudent that future research should focus on finding 
a balance. “What aspects need to adapt to the user” and “what 
level of personalization is required to boost engagement 
levels with the system” are the two questions that have few 
concrete answers. Determining what is considered successful 
in terms of improved engagement is also a relevant question 
to be answered in the future. 

In addition to providing better defined parameters for 
personalized gamification, further tests should be conducted 
with the model created for this project. Test 1A 
underperformed drastically. More tests that follow the 
procedure of test 4 should be conducted, where the 
parameters of the RNN are adjusted rather than just the input 

data. In addition, running test 4B is an option to be 
considered. 

Lastly, it would be prudent to determine how the RNN 
handles a drastic change in user preference. Individuals are 
usually very set in stone, their preferences unique to them 
being rather unchanging. However, circumstances may 
change that force a user to adjust how they approach tasks. It 
is currently unknown how the RNN presented would handle 
a sudden change in the data it is being fed and how quickly it 
could learn this new pattern and forget the old one. 

VII. CONCLUSION 

The works of this project resulted in a RNN model that 
could quickly and accurately determine a scheduling 
preference and proceed to apply those preferences to unseen 
task data. This shows that neural networks are potentially 
capable of learning and applying user preferences to any 
gamified elements with extreme accuracy. This project also 
shows that sparse amounts of data is not necessarily a bad 
thing when regarding neural networks. A comparatively 
small amount of data was created for this project and the 
RNN built and used performed near flawlessly with both 
training and validation scores. This showcases the point that 
this project was ultimately attempting to prove. Personalized 
gamification systems are likely to perform faster and more 
accurately the more targeted the game element is. The theory 
of personalized gamification is that it should produce far 
better results than non-personal systems, but in practice does 
not. This work sought to show that perhaps if the focus was 
tighter and the system was not trying to personalize every 
aspect at once, then it would be able to adapt faster. 
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