
Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

11

Implementation of Finite State Machine to
Determine The Behaviour of Non-Playabale
Character in Leadership Simulation Game

Muhammad Bagus Rizqi Alvian
Faculty of Computer Science

University of Jember
Jember, Indonesia

bagusriski1@gmail.com

 Saiful Bukhori
Faculty of Computer Science

University of Jember
Jember, Indonesia

saiful.ilkom@unej.ac.id

 Muhammad ‘Ariful Furqon
 Faculty of Computer Science

University of Jember
Jember, Indonesia

ariful.furqon@unej.ac.id

Abstract— In today's era, games are widely enjoyed by the
Indonesian society, and one of them is simulation games.
Simulation games have many advantages, including allowing
players to experiment freely and encouraging them to learn.
Therefore, the use of simulation games can be utilized as a
training medium, such as leadership training. There are five
levels of leadership based on The 5 Levels of Leadership:
position, permission, production, people development, and
pinnacle. Direct practice is necessary in training these levels of
leadership through the implementation of Artificial Intelligence
(AI) in simulation games. One of the AIs used for this
implementation is the Finite State Machine (FSM). FSM will be
implemented in Non-Playable Characters (NPCs) to determine
behavior that is adjusted to the 5 levels of leadership. There are
three State Machines (SM) applied to NPCs: Core Game SM,
Movement SM, and Status SM. The use of FSM in NPCs results
in dynamic NPC behavior in terms of physical movement and
changes in NPC status according to 5 Levels of Leadership.

Keywords— Simulation Game, Leadership, Artificial
Intelligence, Finite State Machine

I. INTRODUCTION
In the present era, games are widely enjoyed by the

Indonesian community. This statement is supported by data
obtained by Katadata Media Network, which explains that
Indonesia is the third country with the highest number of
gamers[1]. There are various game categories available, such
as action games, simulations, sports, strategy, adventure, and
others [2]. Simulation games have the advantage of allowing
experimentation without the consequences of those
experiments [3]. Simulation games are widely played because
they provide players with the motivation to learn [4]. The
benefits offered through simulation games can be utilized as a
training tool, one of which is for leadership development.

 There are five levels of leadership that an individual
possesses: position, permission, production, people
development, and pinnacle. It is explained that direct practice
is necessary to train and assess the leadership capabilities of
an individual [5]. With this idea, the implementation of
artificial intelligence in a game becomes essential. The goal of
AI is to make the game intelligent with the aim of making it
engaging to play [6]

. One application of AI in games is the use of Finite State
Machine (FSM). In this context, FSM will be employed to
determine the behavior of Non-Playable Characters (NPCs).

Each NPC behavior will be influenced by the player's
gameplay. FSM can be utilized to simplify the program code
for Artificial Intelligence, especially for supporting characters
that move or respond to specific conditions [7]. Each behavior
is based on the book "The 5 Levels of Leadership" by John C.
Maxwell, so it can be utilized as a leadership training tool for
players. Based on the background information provided, the
research conducted by the author aims to explore the
implementation of Finite State Machine to determine NPC
behavior in the development of a leadership simulation game.

II. LITERATURE REVIEW

A. Simulation games
Game simulation is a type of game that replicates real-

world aspects for players to engage with [8]. These simulation
games immerse players in activities reflective of real-life
experiences, allowing them to partake in these activities
without physically doing so.

The development of simulation games involves combining
elements of both gaming and simulation. Thus, in addition to
providing entertainment, simulation games offer other
benefits to players, such as active player engagement,
adaptability, self-paced experiences, feedback mechanisms,
standardization, and cost-effectiveness [9].

B. Finite State Machines
Finite State Machine (FSM) is a state machine that

consists of a limited set of states or conditions connected by
transitions, forming a data structure referred to as a graph.
Every game begins with an initiation state. Subsequently, the
conditions within the game lead to transitions to other states.
There are four main components of FSM: states, transitions,
rules, and events [6].

Finite State Machine is commonly used to determine the
behavior of AI in the game [10]. Utilizing Finite State
Machine in game development makes the game more
interactive and enjoyable to play [11].

mailto:bagusriski1@gmail.com
mailto:saiful.ilkom@unej.ac.id
mailto:ariful.furqon@unej.ac.id

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

12

TABLE I. FSM COMPONENTS

FSM
Components Description

States Explaining the condition or what an
object does in a game or NPC.

Transitions This component explains the
relationships between different states.

Rules This component explains when
transitions will occur.

Events This component explains the activities
that exist within states.

The components mentioned will form a Finite State
Machine (FSM) design that regulates the behavior of game
objects, including NPCs. FSM will shape a behavioral
response for a game object into a state [12]. In games, the
typical form of Finite State Machine applied is as shown in
Table I. States are connected to each other using transitions,
and each transition is triggered by activated rules.

C. Leadership
Leadership is a process of influential interaction that

occurs when several people agree to designate someone as
their leader to achieve a common goal [13]. Leadership is
commonly associated with an individual's ability to lead. The
definition indicates that the ability for leadership is necessary
to influence others to achieve a common goal. In John C.
Maxwell's book titled "The 5 Levels of Leadership," it
explains that leadership abilities consist of five levels:
Position, Permission, Production, People Development, and
Pinnacle.

Fig. 1. Leadership Levels

In Fig.1. , the sequence of the 5 levels of leadership is
explained. Each level presents increasing difficulties as the
leadership level rises. As one climbs higher in leadership
levels, the time required to advance to the next level becomes
longer. There is a need for high commitment to reach higher
levels. However, achieving higher levels will provide ease in
leading an organization. High leadership capabilities also
indicate a level of success for the organization [14].

TABLE II LEVEL DESCRIPTIONS

Leadership
Levels Description

Level 1 “Position”

In this level, the leader is followed by
their members due to their position, as
the person holds a leadership role by
virtue of their position.

Level 2
“Permission”

In this level, the leader is followed by
their members because the leader is
recognized and known by the
members.

Level 3
“Productive”

In this level, the leader is followed by
their members because the leader is
recognized for their contributions to
the organization.

Level 4 “People
Development”

In this level, the leader is followed by
their members because the leader has
developed their team members.

Level 5
“Pinnacle”

In this level, the leader is followed by
their members because the leader has
produced leaders who have reached
level 4 of leadership.

In the book "The 5 Levels of Leadership," it is explained
that each member has a different perspective on their leader's
level. Therefore, to elevate the leadership level within an
organization, there is a need for leadership skills directed
toward every member of the organization. At each level, there
are negative aspects, added value, best practices, and the belief
required to ascend to a higher level.

III. RESEARCH METODOLOGY
In this research, the author employs the GDLC (Game

Development Life Cycle) method. For development using the
GDLC method, there are three main stages: initiation,
production cycle, system testing, and release [15].

A. System Requirements Analysis
In this stage, a system needs analysis will be conducted.

The analysis performed involves determining specifications
that include the necessary components to build and implement
the system.

B. Initiation
The initiation stage is the initial phase in the development

of a game. This stage involves outlining the game, identifying
its concept, and determining the target audience. The output

Fig. 2. Research methodology

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

13

of the initiation stage is a rough concept of the game under
development.

There are two main outputs in this stage: the game
concept and wireframe. The game concept represents the
rough idea of the designed game and the inspiration behind
it. The wireframe is a simple representation of the designed
game, serving as the foundation for the UI/UX of the game.

C. Production Cycle
In this stage, we enter the production cycle, which is

divided into three parts: pre-production, production, and
alpha testing. The cycle begins with the pre-production phase,
during which a clear plan for the game under development is
established. This is followed by the production phase to
produce and develop the game.

Fig. 3. Production Cycle

1) Pre-Production: In the Pre-Production stage, the
author determines the Game Design that will serve as the
main design for the game under development. Additionally,
in this stage, the steps of game production are outlined. The
product of this stage is the Game Design Document (GDD).
The Game Design Document is a collection of documents
used to design, plan, and outline the elements of the game,
serving as the foundation for game development [16].

2) Production: In this section, the focus is on the

development of the game planned in the previous stage.
Game development typically involves creating game assets,
implementing the GDD in Unity, and programming the game
using C#. The output of this stage is the actual game
application that has been structured and built as a whole.
During this stage, the author implements the finite state
machine in the developed game. The implementation results
in two outputs: the architecture design of the finite state
machine and the written code developed for the game.

D. System Testing
In this evaluation, the author employs a testing method

called black box testing. Black box testing focuses on the
input and output of the software being tested. In its
application, the author utilizes the type of Functional Testing
within this Black box testing. The testing is centered around
the functions of the FSM implementation on NPCs. Several
test cases will be created to assess each functionality of the
FSM. The results of these tests will then be analyzed, and
conclusions will be drawn.

IV. RESULT

A. System Requirement Analysis
In this stage, the system requirements in the development

of the simulation are analyzed. This stage includes the
Statement of Purpose, system functions, functional
requirements, and non-functional requirements..

1) Statement of Purpose: The leadership simulation game
focuses on training players in leadership without sacrificing

entertainment value. The concept of leadership in this game
is based on the leadership book titled 'The 5 Levels of
Leadership.' In the game, players will lead an organization in
a university setting. This game is designed for players who
enjoy management, simulation, and strategy games. It is
intended for the PC platform as one of the main platforms to
be used

2) System Function: The main function of this game is to
train and allow players to practice leadership skills within the
game. Players will gain an understanding of leadership
theories based on the book used as the foundation for
leadership concepts in the game. Players will then apply these
theories within the game. The game is capable of identifying
and providing a rating of the player's leadership level based
on their gameplay.

3) Problem Identification : In the development of
leadership simulation games, various challenges arise that
need to be addressed to produce a game that aligns with its
intended functions. These challenges include:

• The leadership simulation game requires the
formulation of leadership theories and practices that
align with the book The 5 Levels of Leadership.

• Players need to play this game within a specified
time frame to identify the player's appropriate level
of leadership.

4) Functional Requirments: Functional requirements are
the needs of the system to produce the desired system
functions. Some of these requirements include:

• The leadership simulation game is capable of
implementing leadership theories and practices.

• The leadership simulation game is capable of
assessing the player's leadership abilities.

• This game requires players to choose an answer.
Each answer has different consequences.

• Players are required to manage an organization with
managerial skills in this game.

5) Non-Functional Requirements: Non-functional
requirements are requirements that emphasize the behavior of
the system. These requirements are related to the services
offered by the system, such as:

• The game can run on PC with Windows 10 OS.
• The game requires low hardware requirements.
• The game can assess a player's leadership abilities

with just one playthrough.
• The game has a small file size.

B. Initiation
In this stage, the rough concept of the game will be

designed and created to serve as the core reference for the
game design in the next stage. The outputs generated at this
stage are the game concept and the game wireframe.

1) Game Concept : The development of this simulation
game draws inspiration from various games of the same
genre. Several references serve as conceptual foundations for
the development of this game.

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

14

TABLE III. GAME IDEAS

Game Name The concepts drawn from include

Paradox games Game design concept and the features

Kairosoft games Art design concept
Nobunaga
ambition games Main feature turn system

In essence, all three games share a common game design,

namely a strategy game. The ideas from these games are then
processed and combined with leadership concepts based on
the book 'The 5 Levels of Leadership,' implementing the
Finite State Machine algorithm.

2) Wireframe : From the rough concept created, a
wireframe is then structured for the developed game. The
produced wireframe will serve as the main design concept for
the UI/UX of this simulation game.

The initial wireframe for this simulation game is the game
window wireframe. This wireframe illustrates the main
screen layout of the game being played. The written elements
on the image indicate the locations of the features
implemented in the simulation game.

C. Production Cycle
In the production cycle, there are two main stages

implemented, namely Pre-Production and Production. This
stage focuses on the execution of game development from the
design phase to the actual game creation phase.

1) Pre-Production: In this stage, the Game Design
Document (GDD) is outlined for the upcoming game
development. The GDD for the leadership simulation game
includes:

TABLE IV GAME DESIGN DOCUMENT

Category Description

Genre Simulation Strategy

Controls Mouse and Keyboard

Tech Stack
Game Engine: Unity
Documentation: Notion
Asset Editor: Adobe Illustrator, Figma

Game Summary

You are tasked with becoming a leader
in a campus organization. Hone your
leadership skills to reach the highest
level. The more you apply your
leadership abilities, the higher your
experience level in leadership
becomes. There are specific criteria for
advancing your leadership level. Seek
and ascend to the highest level.

Core Player
Experience

Organizing and leading a student
organization from the perspective of
the organization's chairperson.

Within the Game Design Document (GDD), there is also

something known as the Core Loop. The Core Loop is a
design of actions in the game that is repeated continuously as
the main flow for the player's experience. It is a foundational
design within a game's design, serving as a tool to motivate
players to engage with the game continuously.

The game concludes when the total number of turns in the
game reaches 20. Upon completion of the game, it will
display the player's leadership level throughout the gameplay.
This level is influenced by the player's choices in the game.
Each player choice has varying impacts. If a player chooses
options that reflect leadership values, they will achieve a
higher leadership level, and vice versa.

Additionally, besides the Core Loop in the GDD, there is
the Core Feature. The Core Feature is a crucial aspect
provided in a game, representing its distinctive characteristics
and gameplay style. In the leadership simulation game, there
are three core features, namely:

a) Turn-base simulation : The primary system in the
leadership simulation game will use a turn-based structure,
with each turn representing a unit of a week. When the player
presses the play button, the game will progress for a duration
of seven days within the game.

b) Focused character play and event system : The
game will focus on the perspective of the character within the
game or the player's perspective as a leader. Events will occur

Fig. 4. Wireframe

Fig. 5. Core Loop

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

15

within the game, each presenting a scenario that the player
must respond to. Every answer chosen by the player will have
an impact on both themselves and the organization. The
emphasis here is on the leader's perspective in leading the
organization. Each scenario that arises is based on real-life
experiences commonly encountered in student organizations.
Thus, the stories will convey a sense of real-life situations. In
total, there are 26 scenarios that appear in the game.

c) Scenario The 5 levels of leaderhsip : In this
leadership simulation game, the main attributes used to train
leadership are based on the book 'The 5 Levels of Leadership.'
The five leadership levels to be implemented in the game are
position, permission, production, people development, and
pinnacle.

TABLE V LEADERSHIP ATTRBUTE DESIGN

Attribute Description

Trust
Demonstrates the level of trust in the
leader. This attribute is closely related
to all levels of leadership.

Influence

Indicates the level of influence the
leader has on their members. This
attribute is closely related to level 4 of
leadership.

Relation

Indicates the level of relationship
between the leader and their members.
This attribute is closely related to level
2 of leadership.

Morale

Indicates the level of morale among
the members. This attribute is closely
related to level 3 and level 2 of
leadership.

In the leadership attribute of the game, there are four main

attributes applied: Trust, Influence, Relation, Morale. These
key attributes are commonly mentioned and have an impact
on the book 'The 5 Levels of Leadership.' Overall, these
attributes have values that impact the entire leadership
spectrum. Therefore, these attributes are considered as the
main parameters for leadership in the leadership simulation
game.

TABLE VI LEADERSHIP LEVELS SCENARIO

Leadership levels Requirements

Level 1 “Position”

Level 2
“Permission”

1. 50% of all NPCs meet the level-up
requirements.

2. Leadership attribute requirements
for NPCs:
• Trust: 100
• Influence: 100
• Morale: 100
• Relation: 120

3. Completing questions at level 2.

Level 3
“Productive”

1. 50% of all NPCs meet the level-up
requirements.

2. Leadership attribute requirements
for NPCs:
• Trust: 200
• Influence: 200
• Morale: 220
• Relation: 220

3. Completing questions at level 3.

Level 4 “People
Development”

1. 50% of all NPCs meet the level-up
requirements.

2. Leadership attribute requirements
for NPCs:
• Trust: 300
• Influence: 320
• Morale: 320
• Relation: 320

3. Completing questions at level 4.

Level 5
“Pinnacle”

1. 50% of all NPCs meet the level-up
requirements.

2. Leadership attribute requirements
for NPCs:
• Trust: 500
• Influence: 500
• Morale: 500
• Relation: 500

3. Completing questions at level 5.

This attribute will be applied as a leadership attribute for

each NPC in the game. Players will acquire this attribute
through their gameplay, utilizing the Meet Mechanic, Action
Mechanic, and Decision System features. In this scenario,
players can level up their leadership if they meet the
requirements. Then, players must answer questions to
advance to the next level. If there is a wrong choice, the
player will receive a penalty and cannot level up for three
turns. Additionally, if a player fails to plan an action, that
action will not be executed and will have a negative effect on
the organization.

At the end of each turn, insights will appear in the form

of sentences. These insights are derived from the sub-
chapters in the book 'The 5 Levels of Leadership,' providing
information on each level. There will be a total of 20 insights
for each level that will appear randomly at the end of the turn.
Players will gain knowledge directly related to their
leadership level from these insights.

2) Production : In this stage, the development of the
game designed in the pre-production stage will take place.
The outputs from this stage include the UI/UX design of the
game, the architecture design of the finite state machine, and
the implementation of the finite state machine.

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

16

a) UI/UX Design : In this section, the UI/UX design
that will be used in the leadership simulation game is
outlined. The UI/UX components include the game windows,
action UI, meet UI, and interaction UI.

In Figure 4, the design of the Game Windows for the
development of the leadership simulation game is presented.
Each number corresponds to different explanations and
functions. The following is an explanation of the functions of
each UI/UX element.

TABLE VII GAME WINDOWS FUNCTION

No. Name Function

1 Game Interface Displaying the current state within the
game and interacting with NPCs or
organizational divisions.

2 Organization
Attribute UI

Displaying real-time values of
organizational attributes.

3 Turn System UI Showing the day, time, and turn speed.
It can be used to play or pause turns

4 Outliner UI Displaying the scheduled meetings
planned by the player.

5 Game State UI Showing the current game state,
including plan mode, pause mode, and
play mode.

6 Action Board
Button Clicking will display the Action Board

7 Decision Menu
Button Clicking will display Leadership Task

8 Player Profile
Button Clicking will display Player Profile.

Then, the Interaction UI functions as a player interface for

various interactions with the divisions within the game.
Currently, there are two offered interactions: Meeting and
Action.

 Furthermore, it also displays the condition of the
division's room that the player will interact with. If a meeting
is conducted, the condition of the room will change
significantly. Clicking the 'meet' button will reveal the
Meeting UI, while clicking 'action' will bring up the Action
UI.

In the Meeting UI, players can choose between two

meeting categories: regular and event. Regular meetings
involve routine discussions, while event meetings are
designed to prepare for planned actions. Players can select the
meeting time within the range of 1-to-3-time units. Once
confident, they can proceed by clicking 'plan.'

In the Action UI, players can plan a work program for

each division. Each division offers two distinct work
programs. Each program has specific requirements and
effects on the organization. Once the player has chosen a
work program, they can click the 'plan' button to schedule the
program.

Fig. 6. Game Windows

Fig. 7. Interaction Room UI

Fig. 8. Meeting UI

Fig. 9. Action UI

Fig. 7. Action UI

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

17

In the Decision System UI, information is displayed
regarding the player's eligibility to advance to the next
leadership level. Once the player meets the criteria, they can
press the 'upgrade' button to progress to the next stage.

Subsequently, a series of questions will appear that the

player must answer to ascend to the next leadership level.

b) Design architecture of finite state machine : The
architecture design of the Finite State Machine to be
implemented in this leadership simulation game consists of
three main FSM designs: plan, play, and pause.

TABLE VIII CORE GAME STATE MACHINE

State Events Rules Action

Plan In this state, the player
can:

1. Plan meetings
2. Plan actions or work

programs
3. Take tests to advance

to the next leadership
level in the Decision
System

Initial state of
the game

First state

After the
seventh day
of the game
or turn is
completed

Play state

Play

In this state, players can:

1. Conduct planned
meetings

2. Implement planned
actions or work
programs

If the player
presses the
"play" button
during the
planning
state.

Plan state

If the player
presses the
"play" button
during the
pause state.

Pause state

Pause In this state, the player
can pause momentarily
during the play state
with the aim of
reviewing the game and
being cautious in case
something has been
overlooked.

If during the
play state, the
player presses
the "pause"
button,

Play state

In each main state, there is a state machine within it, and

the transition between its states is influenced by the main
state. In the implementation of FSM on NPCs in the game,
there are two FSMs in the NPC: Movement State Machine
and Status State Machine.

The Movement State Machine is a behavior FSM applied
to NPCs in this game, and its function is to control the
movement behavior of NPCs in the game. There are two
states in this state machine: MoveChar and StopChar.

Fig. 10. Decision Sytem UI

Fig. 8. Decision System UI

Fig. 9. Core game state machine diagram

Fig. 10. Movement state machine diagram

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

18

TABLE IX MOVEMENT STATE MACHINE

State Events Rules Action

MoveChar

In this state, the NPC
moves freely, such as
walking to its designated
location and performing
tasks assigned by the
player

Transition to
this state
occurs when
the game state
enters the
Play state.

StopChar

StopChar

In the StopChar state, the
NPC remains stationary,
with only idle
animations.

Transition to
this state
occurs when
the game state
enters the
Pause or Plan
state.

MoveChar

The transition between states in the Movement State

Machine is influenced by the transition of states in the Game
State. Utilizing the Movement State Machine will result in
dynamic NPC movements that adapt to the states present in
the game.

The Status State Machine represents the FSM behavior
applied to NPCs to influence the leadership level effects on
the player. There are 5 states in this State Machine: Member,
Friend, Partner, Comrade, and Golden. Each state represents
the 5 leadership levels achieved by the player.

In the implementation of each state in the Status State

Machine, it is based on the interpretation and simple
modeling of each leadership level. The following is an
explanation of the implementation of the 5 levels of
leadership in the Status State Machine.

TABLE X LEADERSHIP IMPLEMENTATION ON FSM

Leadership
Levels

State
Implementation Description

Level 1
“Position”

Member At this level, the implementation
in the game serves as the initial
state initiation for NPC.

Level 2
“Permission”

Friend At this level, the spotlight is on
the Relation attribute because this
level focuses on the leader's
relationship with the player.

Level 3
“Productive”

Partner At this level, the spotlight is on
the Morale attribute as it will
boost the morale of the members.

Level 4
“People
Development
”

Comrade At this level, the spotlight is on
the Influence attribute because
this level is related to the
influence exerted.

Level 5
“Pinnacle”

Golden At this level, it is the pinnacle
level. For its implementation, the
player needs to elevate all
leadership attributes to their
highest levels.

The correlation of each leadership level to be applied to

each state in the Status State Machine is explained in Table
4.8. Each implemented state will reflect each leadership level,
having specific requirements and benefits for the player. Each
state has its conditions, and there are advantages for the
player. These states are then incorporated into the Status State
Machine, adjusted for events, rules, and transitions for each
state. The implementation form in the Status State Machine
is as follows.

TABLE XI STATUS STATE MACHINE

State Events Rules Action

Member

No events

First state First state

Friend NPC will receive an
additional 1.2 times for
each increase in the
leadership attribute
Relation.

Enter this state
if the player has
reached level 2
of leadership.

Member
state

Partner NPC will receive an
additional 1.2 times for
each increase in the
leadership attribute
Trust.

Enter this state
if the player has
reached level 3
of leadership.

Friend
state

Comrade NPC will receive an
additional 1.2 times for
each increase in the
leadership attribute
Influence.

Enter this state
if the player has
reached level 3
of leadership.

Partner
state

Golden NPC will receive an
additional 1.5 times for
each increase in all
leadership attributes.

Enter this state
if the player has
reached level 5
of leadership.

Comrade
state

Each state has different explanations for events, rules, and

transitions. The Status State Machine is then implemented
into the NPC's behavior related to leadership levels. Overall,
each state provides benefits in the form of additional

Fig. 11. Movement state machine diagram

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

19

attributes. However, as players progress to higher leadership
levels, the difficulty level they face increases.

c) Finite state machine implementation : The
implementation of the three State Machines, namely Core
Game SM, Movement SM, and Status SM, has its own script
code. This is intended to facilitate the system to execute
different State Machines simultaneously. Here is the
implementation of each State Machine. In the Core Game
SM, the focus is on the core game behavior in this leadership
simulation game. The implementation of this State Machine
is divided into three states: plan, play, and pause.

using Leadership.Action;
using TMPro;
using UnityEngine;

namespace Leadership.Core
{
 public class GameSM : StateMachine
 {
 [HideInInspector]
 public Plan planState;
 public Play playState;
 public Pause pauseState;

 [SerializeField] public TurnSystem turnSystem;
 [SerializeField] TextMeshProUGUI statusTextNow;

 private LeadershipMechanic leadershipMechanic;
 private ActionDatabase actionDatabase;

 private void Awake()
 {
 planState = new Plan(this);
 playState = new Play(this);
 pauseState = new Pause(this);

 leadershipMechanic = FindObjectOfType<LeadershipMechanic>();
 actionDatabase = FindObjectOfType<ActionDatabase>();

 }

 public override void PlayButton()
 {
 currentState = playState;
 base.PlayButton();

 }

 public override void PauseButton()
 {
 if (IsPlanState()) return;
 base.PauseButton();

 currentState = pauseState;
 }

 public bool IsPlanState()
 {
 return currentState == planState;
 }

 public bool ChangeWeek()
 {
 return turnSystem.CalenderTime >= 8;
 }

 protected override BaseState GetInitialState()
 {
 return planState;
 }

 public void PrintNow(string value)
 {
 print(value);
 }

 public LeadershipMechanic GetLeadershipMechanic()
 {
 return leadershipMechanic;
 }

 public ActionDatabase GetActionDatabase()
 {
 return actionDatabase;
 }

 public void ChangeModeText()
 {
 statusTextNow.text = currentState.name;
 }

 // private void OnGUI()
 // {
 // string content = currentState != null ? currentState.name : "(no current state)";
 // GUILayout.Label($"<color='black'><size=40>{content}</size></color>");
 // }
 }

}
Fig. 12. Core Game SM

In the Movement SM, the focus is on the behavior of NPC
character movement in the game. The implementation of this
State Machine is divided into 2 states: stop and move. The
implementation form of the State Machine is shown in Fig.13

using Leadership.Core;
using UnityEngine;
using UnityEngine.AI;

namespace Leadership.Character
{
 public class MovementSM : StateMachine
 {
 [HideInInspector]
 public StopCharacter stopCharState;
 public MoveCharacter moveCharState;

 [HideInInspector] public GameSM gameSM;
 [HideInInspector] public Vector3 dir;
 [HideInInspector] public Animator animator;
 [HideInInspector] public NavMeshAgent agent;

 [SerializeField] public Transform targetLoc;

 private TurnSystem turnSystem;

 private void Awake()
 {
 stopCharState = new StopCharacter(this);
 moveCharState = new MoveCharacter(this);

 gameSM = FindObjectOfType<GameSM>();
 animator = GetComponent<Animator>();
 agent = GetComponent<NavMeshAgent>();

 turnSystem = FindObjectOfType<TurnSystem>();

 }

 public override void PlayButton()
 {
 currentState = moveCharState;
 base.PlayButton();

 }

 public override void PauseButton()
 {
 if(currentState == stopCharState) return;
 base.PauseButton();

 currentState = stopCharState;
 }

 protected override BaseState GetInitialState()
 {
 return stopCharState;

 }

 public void SetTransfromTarget(Transform target)
 {
 targetLoc = target;
 }

 public float GetSpeedModifier()
 {
 return turnSystem.SpeedModifier;
 }

 // public bool IsThereTarget()
 // {
 // return target != null;
 // }

 // private void OnGUI()
 // {
 // string content = currentState != null ? currentState.name : "(no current state)";
 // GUILayout.Label($"<color='blue'><size=40>{content}</size></color>");
 // }

 }
}

Fig 13 Movement SM

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

20

In the Status SM, the focus is on the behavior of the
player's leadership level influence on NPCs in the game. The
implementation of this State Machine is divided into 5 states:
member, friend, partner, comrade, and golden. The
implementation form of the State Machine is shown in Fig.14
.

using Leadership.Core;
using UnityEngine;

namespace Leadership.Character
{
 public class StatusPlayerSM : StateMachine
 {
 [HideInInspector] public MemberState memberState;
 [HideInInspector] public FriendState friendState;
 [HideInInspector] public PartnerState partnerState;
 [HideInInspector] public ComradeState comradeState;
 [HideInInspector] public GoldenState goldenState;

 private GameSM _gameSM;
 private CharacterMechanic characterMechanic;
 private LeadershipMechanic leadershipMechanic;
 private void Awake()
 {
 memberState = new MemberState(this);
 friendState = new FriendState(this);
 partnerState = new PartnerState(this);
 comradeState = new ComradeState(this);
 goldenState = new GoldenState(this);

 _gameSM = FindObjectOfType<GameSM>();
 characterMechanic = GetComponent<CharacterMechanic>();
 leadershipMechanic = FindObjectOfType<LeadershipMechanic>();
 }

 protected override BaseState GetInitialState()
 {
 return memberState;
 }

 public bool EligbleToNextLevel(int levelCheck)
 {
 return characterMechanic.CheckLevelUp(1) && levelCheck == characterMechanic.GetLevelLead();
 }

 public void NextLevel()
 {
 if(currentState == memberState)
 {
 ChangeState(friendState);

 }else if(currentState == friendState)
 {
 ChangeState(partnerState);

 }else if(currentState == partnerState)
 {
 ChangeState(comradeState);

 }else if(currentState == comradeState)
 {
 ChangeState(goldenState);

 }
 }

 public string GetCurentStatusStateText()
 {
 return currentState.name;
 }

 public CharacterMechanic GetCharacterMechanic()
 {
 return characterMechanic;
 }
 public LeadershipMechanic GetLeadershipMechanic()
 {
 return leadershipMechanic;
 }

 public void PrintText(string value)
 {
 print(value);
 }

 public bool IsCharacterLevelUpTwo(bool value)
 {
 characterMechanic.IsLevelUpTwo = value;

 return characterMechanic.IsLevelUpTwo ;
 }

 public bool GetCharacterLevelUpTwo()
 {
 return characterMechanic.IsLevelUpTwo;
 }

 public bool IsCharacterLevelUpThree(bool value)
 {
 characterMechanic.IsLevelUpThree = value;

 return characterMechanic.IsLevelUpThree ;

 }
 public bool GetCharacterLevelUpThree()
 {
 return characterMechanic.IsLevelUpThree;
 }

 public bool IsCharacterLevelUpFour(bool value)
 {
 characterMechanic.IsLevelUpFour = value;

 return characterMechanic.IsLevelUpFour ;
 }
 public bool GetCharacterLevelUpFour()
 {
 return characterMechanic.IsLevelUpFour;
 }

 public bool IsCharacterLevelUpFive(bool value)
 {
 characterMechanic.IsLevelUpFive = value;

 return characterMechanic.IsLevelUpFive;
 }
 public bool GetCharacterLevelUpFive()
 {
 return characterMechanic.IsLevelUpFive;
 }

 public bool LeadershipIsLevelUp(int levelCap)
 {
 if(leadershipMechanic.GetLevelLeadershipPlayer() >= levelCap)
 {
 return true;
 }

 return false;
 }
 }

}

Fig 14 Status SM

D. System Testing
In testing the NPC behavior, Black-Box testing is utilized.

From the conducted test data, there are a total of 13 test cases
aimed at evaluating NPC behavior. Each test case consists of
functionality tests, expected outcomes, and the procedures
followed during testing. The three implemented State
Machines for NPCs will be subjected to this testing to
ascertain the overall behavior alignment with the specified
test cases.

Each planned test case will be executed one by one. It will
then be determined whether the game passes the specified test
case. If it passes, the testing process will proceed to the next
test case. If it fails, the game will be debugged, and the issues
addressed before retesting until it passes. Once all test cases
have been executed, the system testing will be considered
complete. The results from each executed test case indicate
that the implemented FSM for NPCs has been successful, and
functions as intended.

V. CONCLUSION
Based on the problem formulation written in this study,

the results show the implementation of Finite State Machine
on NPC with 3 State Machines, namely Core Game State
Machine, Movement State Machine, and Status State
Machine. Each state machine regulates different behaviors.
The Core Game State Machine controls the flow of the game
that impacts other state machines. The Movement State
Machine manages NPC movement in the game. The Status
State Machine regulates the leadership level of each NPC
based on the 5 Levels of Leadership. Test results indicate that
the implementation of Finite State Machine to determine
NPC behavior in leadership simulation games produces
dynamic NPC behavior in terms of NPC physical movement
and changing NPC status. Thus, from the conducted research,

Journal of Games, Game Art and Gamification
Vol. 09, No. 01, 2024

21

the implementation of a Finite State Machine is a suitable
choice for determining NPC behavior in a dynamic and
flexible game.

REFERENCES

[1] V. Azkiya, “The Third Highest Number of Indonesian Gamers in
the World (translate)”. Accessed: Oct. 28, 2022. [Online].
Available:
https://databoks.katadata.co.id/datapublish/2022/02/16/jumlah-
gamers-indonesia-terbanyak-ketiga-di-dunia

[2] J. J. Vargas-Iglesias, “Making Sense of Genre: The Logic of Video
Game Genre Organization,” Games Cult, vol. 15, no. 2, pp. 158–
178, Mar. 2020, doi: 10.1177/1555412017751803.

[3] H. Wise, “10 Reasons Real Life Simulation Games Are So Head-
Scratchingly Successful.” Accessed: Feb. 08, 2023. [Online].
Available: https://www.thegamer.com/simulation-games-
successful-the-sims/#you-are-the-captain

[4] J. J. Padilla et al., “Using simulation games for teaching & learning
discrete-event simulation,” Proceedings - Winter Simulation
Conference, pp. 3375–3384, Jul. 2016, doi:
10.1109/WSC.2016.7822368.

[5] J. Maxwell, The 5 Levels of Leadership, 2nd ed. Surabaya: Media
Distribusi Cemerlang, 2017.

[6] D. Aversa, Unity artificial intelligence programming : Add
powerful, believable, and fun AI entities in your game with the
power of Unity, 5th ed. Birmingham: Packt, 2022.

[7] A. Taru, “Penerapan Finite State Machine Pada Perancangan
Game.” Accessed: Jan. 27, 2023. [Online]. Available:
https://www.gamelab.id/news/206-penerapan-finite-state-
machine-pada-perancangan-game

[8] J. Ellis, “What is a Sim Game?,” EasyTechJunkie. Accessed: Jan.
27, 2023. [Online]. Available:
https://www.easytechjunkie.com/what-is-a-sim-game.html

[9] M. Arshavskiy, “Simulations And Games: Making Learning Fun!
- eLearning Industry.” Accessed: Nov. 27, 2022. [Online].
Available: https://elearningindustry.com/simulations-and-games-
making-learning-fun

[10] C. Buttice, “Finite State Machine: How It Has Affected Your
Gaming For Over 40 Years.” Accessed: Jan. 27, 2023. [Online].
Available: https://www.techopedia.com/finite-state-machine-
how-it-has-affected-your-gaming-for-over-40-years/2/33996

[11] D. Jagdale, “Finite State Machine in Game Development,”
International Journal of Advanced Research in Science,
Communication and Technology, pp. 384–390, Oct. 2021, doi:
10.48175/IJARSCT-2062.

[12] H. F. Ramadhan, S. H. Sitorus, and S. Rahmayuda, “Educational
Game Introduction to West Kalimantan Culture and Tourism
Using Android-Based Metdoe Finite State Machine (Translate)” at
Coding: Journal Komputer dan Aplikasi, 7(1):108-119 2019.

[13] A. Silva, “What is Leadership?,” Journal of Business Studies
Quarterly, 8(1), 2016.

[14] M. Asrar-ul-Haq and T. Anjum, “Impact of narcissistic leadership
on employee work outcomes in banking sector of Pakistan,”
Future Business Journal, vol. 6, no. 1, Dec. 2020, doi:
10.1186/s43093-020-00040-x.

[15] R. Krisdiawan, “Implementation of Gdlc System Development
Model and Linear Congruential Generator Algorithm in Puzzle
Game (translate)”. Jurnal Nuansa Informatika, 12(2), Jul. 2018.

[16] M. T. Trilaksono, “Designing Game Design Document,” Jan.
2022.

https://databoks.katadata.co.id/datapublish/2022/02/16/jumlah-gamers-indonesia-terbanyak-ketiga-di-dunia
https://databoks.katadata.co.id/datapublish/2022/02/16/jumlah-gamers-indonesia-terbanyak-ketiga-di-dunia
https://www.thegamer.com/simulation-games-successful-the-sims/#you-are-the-captain
https://www.thegamer.com/simulation-games-successful-the-sims/#you-are-the-captain
https://www.gamelab.id/news/206-penerapan-finite-state-machine-pada-perancangan-game
https://www.gamelab.id/news/206-penerapan-finite-state-machine-pada-perancangan-game
https://www.easytechjunkie.com/what-is-a-sim-game.html
https://elearningindustry.com/simulations-and-games-making-learning-fun
https://elearningindustry.com/simulations-and-games-making-learning-fun
https://www.techopedia.com/finite-state-machine-how-it-has-affected-your-gaming-for-over-40-years/2/33996
https://www.techopedia.com/finite-state-machine-how-it-has-affected-your-gaming-for-over-40-years/2/33996

