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Abstract—Deep neural networks require intensive
computation and communication due to the large volume of
gradient updates exchanged during training. This paper
investigates Adaptive Gradient Compression (AGC), an
information-theoretic framework that reduces redundant
gradients while preserving learning stability. Two independent
compression mechanisms are analyzed: an entropy-based
scheme, which filters gradients with low informational
uncertainty, and a Fisher-based scheme, which prunes gradients
with low sensitivity to the loss curvature. Both approaches are
evaluated on the CIFAR-10 dataset using a ResNet-18 model
under identical hyperparameter settings. Results show that
entropy-guided compression achieves a 33.8x reduction in
gradient density with only a 4.4% decrease in test accuracy,
while Fisher-based compression attains 14.3x reduction and
smoother convergence behavior. Despite modest increases in
per-iteration latency, both methods maintain stable training and
demonstrate that gradient redundancy can be systematically
controlled through information metrics. These findings
highlight a new pathway toward information-aware
optimization, where learning efficiency is governed by the
informational relevance of gradients rather than their
magnitude alone. Furthermore, this study emphasizes the
practical significance of integrating information theory into
deep learning optimization. By selectively transmitting
gradients that carry higher information content, AGC
effectively mitigates communication bottlenecks in distributed
training environments. Experimental analyses further reveal
that adaptive compression dynamically adjusts to training
dynamics, providing robustness across various learning stages.
The proposed framework can thus serve as a foundation for
developing future low-overhead optimization methods that
balance accuracy, stability, and efficiency, and crucial aspects
for large-scale deep learning deployments in edge and cloud
computing contexts.
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I. INTRODUCTION

The rapid advancement of deep neural networks (DNN5s)
has brought unprecedented progress in computer vision,
natural language processing, and other domains of artificial
intelligence. However, this success comes at the cost of high
computational and energy demands, primarily due to the
enormous volume of gradient updates propagated through
millions or even billions of parameters during training. [1] In
many cases, a substantial portion of these gradients
contributes negligibly to the overall improvement of model
performance, resulting in significant redundancy within the
learning dynamics. [2]

Gradient compression techniques have emerged as a
promising direction to mitigate this inefficiency. Prior
research has primarily focused on reducing communication
overhead in distributed or federated learning environments by
compressing or quantizing gradients before transmission. [3]
While these methods achieve notable efficiency gains, they
tend to view gradients as mere numerical quantities, without
analyzing  their  underlying information  content.
Consequently, little is known about how different forms of
compression affect the information flow and representation
dynamics of neural networks during training.

This study explores the concept of Adaptive Gradient
Compression (AGC) as an analytical framework to understand
and control redundancy in gradient-based learning. Instead of
relying solely on magnitude-based thresholding, AGC
incorporates information-theoretic measures—specifically,
entropy and Fisher information—to guide compression. The
intuition is that entropy captures the uncertainty or dispersion
of gradient distributions, while Fisher information quantifies
the sensitivity of the model parameters to perturbations in the
loss landscape. [4], [5]
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The primary objective of this research is to analyze the
learning dynamics induced by entropy-based and Fisher-based
compression mechanisms, both applied independently.
Through controlled experiments on CIFAR-10, we measure
not only traditional performance metrics such as accuracy and
training loss, but also the structural properties of the gradients
themselves—namely, sparsity, non-zero ratio (NNZ), and step
time. These analyses provide insight into how information-
guided compression modulates the efficiency and stability of
the training process.

The contributions of this work are threefold. First, it
presents a systematic analysis of entropy- and Fisher-based
compression methods within the same adaptive framework,
providing a unified view of how different information
measures influence optimization.

Second, it offers quantitative and visual evidence that
supports the hypothesis that gradient redundancy is not
random but structurally correlated with information flow
across training epochs. [6]

Communication overhead has been a primary bottleneck
in data-parallel training, motivating compressive techniques
that reduce gradient payload without destabilizing
convergence. Early quantization methods, such as QSGD [7],
provide unbiased stochastic quantization with theoretical
guarantees, while Deep Gradient Compression (DGC)
combines sparsification, momentum correction, and local
gradient clipping to deliver large bandwidth reductions in
practice [8]. Prior work on 1-bit SGD demonstrated that
aggressive quantization can scale speech DNN training across
commodity GPUs with minimal accuracy loss [9]. Subsequent
studies on structured sparsification and sketching further
formalized convergence under compressed updates [10],
establishing a foundation for modern gradient compression
pipelines.

A central theme in sparsification is preserving optimizer
dynamics despite dropping most coordinates. Top-k and
threshold-based sparsification reduce communicated entries
but risk bias accumulation; residual accumulation / memory
mechanisms (e.g., Sparsified SGD with Memory) re-inject
dropped mass in future steps to recover convergence rates
[11]. Empirically, Sparse Communication for Distributed
SGD showed substantial traffic reduction without
compromising BLEU in NMT [5]. Theoretically, Error
Feedback Fixes SignSGD proved that adding an error-
feedback buffer restores descent directions even for biased
compressors, stabilizing a range of schemes (sign, top-k,
quant) [12].

Sign-based updates achieve extreme compression by
communicating only the sign of coordinates, sometimes with
majority vote aggregation to mitigate noise [13]. Unbiased or
variance-reduced quantizers (e.g., stochastic rounding in
QSGD) provide convergence guarantees under smoothness
assumptions [7]. These methods trade precision for scale, and
error feedback is now recognized as essential for stability
under high compression ratios [13].

Orthogonal to codec design, Local SGD reduces
communication frequency by performing several local steps
before averaging [14]. In federated settings, communication,
privacy, and heterogeneity constraints spur hybrid approaches
that mix local updates, compression, and adaptive
aggregation; comprehensive surveys highlight open
challenges and system-level trade-offs [15]. Large-batch
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training advances (e.g., 1-hour ImageNet) emphasize system
co-design and optimizer tuning that interact with compression
choices [16].

Evidence for over-parameterization and intrinsic
redundancy motivates compressing not only messages but
also models. Deep Compression unifies pruning, quantization,
and Huffman coding to shrink trained networks substantially
with negligible accuracy loss [9]. The Lottery Ticket
Hypothesis suggests that sparse subnetworks (“winning
tickets”) can train to full accuracy when properly initialized
[2], reinforcing the view that many updates/parameters are
superfluous to end performance.

Information theory provides tools to reason about which
updates matter. The Information Bottleneck (IB) perspective
frames learning as compressing representations while
preserving task-relevant information [17], with empirical
analyses tracking mutual information dynamics during
training [18]. Entropy has been used as a proxy for
uncertainty/dispersion, guiding pruning, selection, and
curriculum signals; when applied to gradients, entropy
highlights redundancy patterns distinct from magnitude alone,
offering a complementary criterion to geometric cues.

Fisher Information quantifies parameter sensitivity to the
data-likelihood and forms the Riemannian metric of the
statistical manifold [19]. Curvature-aware optimization (e.g.,
natural gradient) rescales steps using Fisher (or
approximations) to traverse valleys efficiently [19]. Practical
second-order methods, such as Hessian-free optimization,
exploit curvature structure to accelerate deep learning [20].
Using Fisher-derived scores to prioritize updates connects
compression to local geometry: low-Fisher coordinates lie in
flat directions and are prime candidates for suppression.

Visualization studies reveal that sharper minima correlate
with brittle generalization and that architectural/optimizer
choices shape landscape geometry [21]. These insights
motivate adaptive compression that respects layer-wise and
epoch-wise dynamics rather than static thresholds, aligning
selection with evolving curvature and uncertainty profiles.

Adaptive methods (e.g., Adam [22], AdaGrad [23])
modulate per-coordinate learning rates based on gradient
statistics. Compression interacts with these estimators via
biased/noisy second moments; momentum correction, error
feedback, and threshold scheduling are therefore key to
preserving optimizer intent under sparsity and quantization
[24], [13]. Large-batch regimes further entangle gradient
variance, scaling rules, and communication budgets [16],
suggesting that compression should co-design with optimizer
hyperparameters.

Finally, the study demonstrates that adaptive compression
can serve not merely as a speed optimization tool but also as a
lens to understand the informational dynamics underlying
deep learning models.

The rest of this paper is organized as follows. Section II
describes the experimental setup, the baseline, and the two
compression mechanisms (entropy-based and Fisher-based).
Section III presents and analyzes the results, including training
curves, non-zero ratios, and efficiency metrics. Section IV
discusses the implications of information-guided gradient
control for scalable and interpretable optimization. Section V
concludes the study and outlines potential directions for future
work.



II. PROPOSED METHOD

A. Experimental Setup

The experiments were conducted using the CIFAR-10
dataset, consisting of 50,000 training and 10,000 test images
across 10 classes. All experiments used an identical
architecture based on ResNet-18, trained for 100 epochs with
a batch size of 128, stochastic gradient descent (SGD)
optimizer with momentum 0.9, and cosine annealing learning
rate schedule starting at 0.01 [25].

Three independent configurations were tested:

1. Baseline: Standard backpropagation without

compression.

2. Entropy-based Compression: Gradients pruned
according to local entropy measure.

3. Fisher-based Compression: Gradients pruned based
on Fisher information magnitude.

Each experiment was repeated three times to account for
stochasticity ~in initialization and data  shuffling.
Training and evaluation were performed on a single NVIDIA
RTX 6000 GPU, with all gradient operations monitored using
custom PyTorch hooks to capture compression statistics in
real time. The following algorithms formalize the full training
pipeline and each compression mechanism in detail.

Algorithm 1: Adaptive Gradient Compression Training Pipeline

B. Adaptive Gradient Compression Framework

The Adaptive Gradient Compression (AGC) framework
operates by intercepting gradients during the backward pass
and applying a selective compression mechanism before the
optimizer update. Let g, € R™denote the gradient vector at
time step t.

AGC applies a mapping C(-) that selectively retains
components of g,deemed informative:

gc = C(9:6)

where g;is the compressed gradient, and 6, represents
adaptive parameters such as entropy thresholds or Fisher
scaling factors.

The key idea is that not all gradients carry equal
information, and compression should preserve components
most relevant to learning progress. Algorithm 1 outlines the
overall training process. During the backward phase, AGC
intercepts the gradient tensor for each layer and applies either
the entropy-based or Fisher-based compression strategy(Lin et
al., 2023).

ALGORITHM 1: TRAIN AGC
Input:
D : Dataset (train, validation/test)
f o : Neural network model with parameters 6
OPT : Optimizer (SGD/Adam) with learning rate n
STRAT {ENTROPY | FISHER} « selected compression strategy
E : Number of epochs
B : Batch size
CONF AGC configuration parameters _H, t F, Pp_EMA, etc.)
Output:
Shd : Trained model parameters
LOGS Recorded metrics (Loss, Accuracy, NNZ, StepTime, Compression)
Procedure:
1: Initialize model parameters 6, optimizer state OPT, and per-layer AGC statistics
(EMA H ¢, EMA F (, ..)
2 for e =1 .. E do
3 Reset epoch metrics (3 Loss, YAcc, YNNZ, >Time)
4. for each mini-batch (X, y) € D.train of size B do
5: tic « start timer ()
6 g < f£.6(X) > FORWARD PASS
7 L « loss(y, V) > COMPUTE LOSS
8: v ~ autograd.backward (L) [> RAW GRADIENTS
9: for each layer { do [> AGC HOOK (PER LAYER)
10: g ¢ < grad(layer {)
11: if STRAT = ENTROPY then
12: g ¢, stat ¢ — ENTROPY COMPRESS(g (¢, CONF, EMA H {)
13: EMA H ¢ — update EMA(EMA H (, stat (.H, B_EMA)
14: else [> STRAT = FISHER
15: g ¢, stat ¢ — FISHER COMPRESS(g ¢, CONF, EMA F ¢)
16: EMA F ¢ — update EMA(EMA F (¢, stat {.F, B _EMA)
17: end 1f
18: set _grad(layer {, g {)
19: end for
20: OPT.step (O) > PARAMETER UPDATE
21: toc < stop timer ()
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(global & per-layer),
Compression t

NNZ ratio,

22: Compute batch metrics:
Loss t, Acc t, NNZ t
StepTime t = (toc - tic),
23: Update epoch aggregators
24: end for
25: Evaluate on D.val/test — Acc_e, Loss_e
26: Log epoch summaries (Loss, Accuracy,
27: end for
28: return ©6*, LOGS

information histograms, timing)

C. Entropy-Based Compression

In the entropy-based variant, gradients are normalized to
a probability distribution using softmax:

__exp (gl
PTY exp (g )

The Shannon entropy of the gradient distribution is then
computed as:

H(g) == ) pilog (b))

Algorithm 2: Entropy-Based Gradient Compression

Gradients in low-entropy regions—where the distribution is
sharply peaked and thus less uncertain—are considered
redundant and subject to pruning.

A dynamic threshold 7, controls the compression ratio
adaptively based on the running average of entropy per layer.
Gradients with contribution below this threshold are set to
Zero:

~ _ {gi: if 1 g; 1>ty
9= otherwise

This mechanism captures information sparsity rather than raw
magnitude, allowing compression that respects the uncertainty
landscape of gradients.[27]

Function: ENTROPY COMPRESS (g, CONF, EMA H)
Input:
g : Gradient vector for layer {

11: // Select informative gradients
12: M < (lgl 2 1_H)
13: g« g O M

15: if sum(M) < k min then

16: idx topk < argTopK(|g|, k min)
17: set M[idx topk] =1

18: g-g(O®OM

19: end if

20: g « clip(g, -clip max, clip max)

21: k keep « sum(M) ; NNZ « k keep / n

22: stat « {H: H, k keep: k keep, NNZ: NNZ}
23: return g, stat

(size n)

CONF {t H init, B _EMA, clip max, eps, mode thresholding}
EMA H Exponential moving average of entropy for layer ¢
Output:
g~ : Compressed gradient (sparse)
stat : {H: entropy value, k keep: number retained, NNZ ratio}
Steps:
1: // Normalize magnitudes into a probability distribution
2: a < Igl / (llgll_= + eps)
3: p « softmax(a)
4: H < - ip i * log(p i + eps) > Shannon entropy
5: // Adaptive entropy thresholding
6: if mode thresholding = "relative" then
7: T Heo*EMAH+ (l-a) * H
8: else if mode thresholding = "percentile" then
9: T H « percentile(lgl, g%)
10: end if

14: // Prevent collapse by keeping a minimal top-k subset
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D. Fisher Information-Based Compression

The Fisher-based compression relies on the Fisher
Information Matrix (FIM), which quantifies the sensitivity of
the loss function L(6) with respect to parameters 6 .
For each parameter 6;:

dlog p(x | 9)

Fi =E[(——3,
L

)%

In practice, computing the full FIM is intractable, so we
approximate it using the squared gradient magnitude over
mini-batches:

Algorithm 3: Fisher-Based Gradient Compression

E =~ g}
Gradients with lower Fisher information contribute minimally
to reducing loss and can thus be compressed.
A Fisher threshold 7 is adaptively determined from the
moving average of Fisher magnitudes across layers.
The compressed gradient becomes:

~ i, le > TF
9 {0, otherwise

This mechanism prioritizes gradients that are statistically
significant to the loss curvature, offering an importance-aware
sparsification strategy [28].

Function: FISHER COMPRESS (g, CONF, EMA F)
Input:
g Gradient vector for layer { (size n)
CONF {t_F init, B _EMA, clip max, eps, mode thresholding}
EMA F Exponential moving average of Fisher magnitude for layer {
Output:
g Compressed gradient (sparse)
stat {F: fisher stat, k keep: number retained, NNZ ratio}
Steps:
1: // Estimate Fisher Information per element
2: F hat « g O g > \hat{F} i ~ g i"2
3: // Adaptive Fisher thresholding
4: 1if mode thresholding = "relative" then
5: T Feoa*EMAF + (1-a) * mean(F hat)
6: else if mode thresholding = "percentile" then
7 T F « percentile(F hat, g%)
8: end if
9: // Mask out low-importance gradients
10: M « (F_hat 2 1 _F)
11: g« g O M
12: // Ensure minimum retention for stability
13: if sum(M) < k min then
14: idx topk « argTopK(F hat, k min)
15: set M[idx topk] =1
16: g g @®M
17: end if
18: g « clip(g, -clip max, clip max)
19: k keep « sum(M) ; NNZ ~ k keep / n
20: fisher stat « mean(F _hat[M])
21: stat « {F: fisher stat, k keep: k keep, NNZ: NNZ}
22: return g, stat

E. Evaluation Metrics
To quantify the effect of adaptive compression, the
following metrics were used:

1. Test Accuracy: Performance on CIFAR-10 test set
after training convergence.

2. Training Loss: Final and minimum training loss
achieved during optimization.

3. Non-Zero Ratio (NNZ): Fraction of gradient
elements retained after compression.

4. Average Step Time: Mean computation time per

training iteration.

5. Compression Ratio: Ratio of baseline gradient size

to compressed gradient size.

Additionally, qualitative training dynamics plots were
analyzed, including loss curves, accuracy trajectories, and
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Figure 1 Training Analysis — Baseline Configuration

A. Overview

NNZ ratios, to visualize how compression affects
convergence and stability.
III. RESULTS AND DISCUSSION

This section presents the empirical results of three

experimental configurations within the Adaptive Gradient
Compression (AGC) framework: (1) the baseline model

without compression, (2) entropy-based compression, and (3)
Fisher-based compression. Each configuration was trained on
the CIFAR-10 dataset using identical hyperparameters and
architecture (ResNet-18) to ensure a fair comparison.
Results are reported in terms of accuracy, training loss,
sparsity ratio (non-zero gradients), computational latency, and
compression ratio. Figures 1-4 visualize the training
dynamics, while Tables 1 and 2 summarize the key metrics
and qualitative findings.

Table 1. Summary of quantitative results across AGC configurations

Configuration Final Test Acc (%) Train Loss NNZ Ratio Step Time (ms) Compression (x)
Baseline 87.80 0.0578 0.336 51.0 -
Entropy 83.41 0.3527 0.030 85.7 33.8%

Fisher 80.73 0.4601 0.070 67.5 14.3x

The baseline model achieved the highest accuracy
(87.8%) and fastest iteration speed (51 ms per step). However,
it required dense gradient propagation (NNZ = 0.336) with no
compression applied. The entropy-based approach attained a
33.8% compression ratio and reduced active gradients to 3%
while maintaining 83.4% accuracy—only 4.4% below the
baseline. The Fisher-based method achieved 14.3%
compression with 80.7% accuracy and slightly lower latency
(67.5 ms) than the entropy variant. These results confirm that
both information-guided strategies successfully reduce
gradient redundancy while preserving most of the learning
capacity.
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B. Training Dynamics

1. Baseline Configuration

The baseline model exhibits smooth convergence with a
final training loss of 0.0578 and stable accuracy throughout
the training epochs. Gradient density remains consistent
(average NNZ = 0.336), indicating that approximately one-
third of gradient elements contribute actively at each step.
Step-time profiles show a tight distribution around 51 ms,
reflecting computational efficiency in the absence of
compression overhead. This setup provides a clean control
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condition for interpreting the effect of adaptive gradient
sparsification in subsequent experiments.
2. Entropy-based Compression

Entropy-guided AGC produced the most aggressive
compression: NNZ decreased to 0.03, equivalent to nearly
90% sparsity. Training loss converged to 0.3527, and test
accuracy stabilized at 83.4%. Although step time increased to
an average of 85.7 ms—due to entropy computation and
masking operations — the trade-off yielded significant
memory and communication efficiency ( =~ 33.8 X
reduction).

Visually, the training curves reveal a steeper initial loss
descent followed by slower convergence, suggesting that
entropy pruning acts as a strong regularizer. Layer-wise
inspection of gradient magnitudes shows that deeper
convolutional blocks contribute disproportionately to the
retained gradients, consistent with the idea that later layers
carry more class-discriminative information. Entropy-based
compression  selectively  preserves  high-uncertainty
gradients, effectively focusing computation on informative
updates. This aligns with the information bottleneck
hypothesis, wherein model optimization benefits from
filtering redundant gradient information as representations
become more compact.

3. Fisher-based Compression

Fisher-based compression achieved moderate sparsity
(NNZ = 0.07) with higher stability and smoother convergence
compared to entropy pruning. The final accuracy (80.7%) and
training loss (0.4601) indicate that while the model learns
more conservatively, it retains key curvature-sensitive
gradients. Average iteration latency (67.5 ms) was lower than
the entropy variant, since Fisher estimation requires only

element-wise squaring ( g?) instead of a full entropy
computation.

By preserving gradients with high Fisher information, this
method prioritizes parameters critical to the loss curvature,
effectively retaining sensitivity to important directions in the
optimization landscape. The result is a more balanced trade-
off between compression efficiency and training stability.

C. Comparative Visualization and Discussion
1. Gradient Sparsity and Efficiency Trends

Across the three methods, NNZ ratios exhibit distinct
temporal signatures:

e Baseline: remains stable around 0.33 throughout
training.

e Entropy: rapidly decays to 0.03 within the first 10
epochs and stabilizes thereafter.

e Fisher: gradually declines from 0.35 — 0.07 over
roughly 40 epochs.

These dynamics indicate that redundancy naturally
increases as the model converges. Entropy compression
captures this by adaptively reducing active gradients early,
while Fisher compression responds more gradually,
reflecting its curvature-based selection.

2. Step Time and Compression Trade-Offs

A cross-comparison of latency and compression ratios
reveals that:

e Baseline achieves
compression benefit.

e Entropy compression incurs higher per-step cost yet
offers substantial bandwidth and memory savings.

e Fisher compression achieves an efficient mid-
ground, maintaining reasonable sparsity and speed.

fastest iteration but no
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Figure 3 Training Analysis — Fisher-Based Compression

Overall, the cost of entropy computation (=+34 ms per
step) is outweighed by the reduction in gradient storage and
transmission volume, particularly in distributed training
contexts.

D. Information-Theoretic Perspective

From an information-theoretic viewpoint:

e Entropy compression filters out predictable, low-
information gradients, leaving only updates that
maximize uncertainty reduction.

e Fisher compression identifies gradients most
informative about model sensitivity—those
corresponding to steep regions of the loss surface.

Together, they illuminate complementary facets of
information flow in optimization: entropy governs gradient
uncertainty, while Fisher governs gradient significance. Both
methods demonstrate that training dynamics can be guided
not merely by magnitude, but by information content.

Entropy-based compression emerges as the most
efficient method for aggressive redundancy reduction, while
Fisher-based compression balances efficiency and
robustness.

These findings confirm that information-guided compression
strategies offer a controllable pathway to accelerate learning
and interpret the structure of gradient information flow.

IV. CONCLUSION

This paper introduced an information-theoretic framework
for Adaptive Gradient Compression (AGC), in which
gradients are treated as informational signals rather than
purely numerical updates. Two independent compression
mechanisms were analyzed: entropy-based filtering, which
removes gradients with low informational uncertainty, and
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Fisher-based filtering, which removes gradients with low
sensitivity to the loss curvature. Both methods were compared
against an uncompressed baseline using the CIFAR-10
benchmark and a ResNet-18 model.

Experimental results demonstrated that significant
gradient redundancy exists in conventional training.
Entropy-based compression achieved up to 33.8x reduction in
gradient density while maintaining over 83 % test accuracy,
whereas Fisher-based compression achieved 14.3x reduction
with smoother convergence and lower computational
overhead.

Despite minor latency increases due to entropy estimation,
both approaches maintained stable optimization dynamics and
preserved the majority of model performance.
These findings verify that the flow of gradient information
during learning can be regulated without sacrificing
convergence, thereby offering a principled route to efficient
and interpretable optimization.

From an analytical standpoint, the results highlight two
complementary perspectives on informational relevance:
(1) entropy reflects the uncertainty of gradient activation, and
(2) Fisher information reflects the importance of gradients to
the local geometry of the loss landscape. Together, they
provide a dual lens for understanding how information
propagates through deep networks during learning.

Future work will extend this study in several directions.
First, layer-wise adaptive thresholds will be developed to
refine the trade-off between compression and accuracy
dynamically throughout training. Second, integration with
distributed and federated learning frameworks will be
explored to quantify real-world savings in bandwidth and
energy consumption. Third, theoretical analysis will be
pursued to formalize the relationship between gradient
information measures and mutual information in
representation learning. Finally, hybrid strategies that



combine entropy and Fisher metrics are expected to yield
more robust and self-adjusting compression schemes capable
of operating under non-stationary learning environments.

In summary, the proposed AGC framework establishes a
foundation for information-aware optimization in deep
learning. By quantifying and controlling informational
redundancy in gradient updates, it provides both an empirical
and theoretical step toward more efficient, scalable, and
interpretable neural training systems.
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