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Abstract—Deep neural networks require intensive 

computation and communication due to the large volume of 

gradient updates exchanged during training. This paper 

investigates Adaptive Gradient Compression (AGC), an 

information-theoretic framework that reduces redundant 

gradients while preserving learning stability. Two independent 

compression mechanisms are analyzed: an entropy-based 

scheme, which filters gradients with low informational 

uncertainty, and a Fisher-based scheme, which prunes gradients 

with low sensitivity to the loss curvature. Both approaches are 

evaluated on the CIFAR-10 dataset using a ResNet-18 model 

under identical hyperparameter settings. Results show that 

entropy-guided compression achieves a 33.8× reduction in 

gradient density with only a 4.4% decrease in test accuracy, 

while Fisher-based compression attains 14.3× reduction and 

smoother convergence behavior. Despite modest increases in 

per-iteration latency, both methods maintain stable training and 

demonstrate that gradient redundancy can be systematically 

controlled through information metrics. These findings 

highlight a new pathway toward information-aware 

optimization, where learning efficiency is governed by the 

informational relevance of gradients rather than their 

magnitude alone. Furthermore, this study emphasizes the 

practical significance of integrating information theory into 

deep learning optimization. By selectively transmitting 

gradients that carry higher information content, AGC 

effectively mitigates communication bottlenecks in distributed 

training environments. Experimental analyses further reveal 

that adaptive compression dynamically adjusts to training 

dynamics, providing robustness across various learning stages. 

The proposed framework can thus serve as a foundation for 

developing future low-overhead optimization methods that 

balance accuracy, stability, and efficiency, and crucial aspects 

for large-scale deep learning deployments in edge and cloud 

computing contexts.  
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learning dynamics; information theory; optimization efficiency; 

deep learning 

 

I. INTRODUCTION  

The rapid advancement of deep neural networks (DNNs) 
has brought unprecedented progress in computer vision, 
natural language processing, and other domains of artificial 
intelligence. However, this success comes at the cost of high 
computational and energy demands, primarily due to the 
enormous volume of gradient updates propagated through 
millions or even billions of parameters during training. [1] In 
many cases, a substantial portion of these gradients 
contributes negligibly to the overall improvement of model 
performance, resulting in significant redundancy within the 
learning dynamics. [2] 

Gradient compression techniques have emerged as a 
promising direction to mitigate this inefficiency. Prior 
research has primarily focused on reducing communication 
overhead in distributed or federated learning environments by 
compressing or quantizing gradients before transmission. [3] 
While these methods achieve notable efficiency gains, they 
tend to view gradients as mere numerical quantities, without 
analyzing their underlying information content. 
Consequently, little is known about how different forms of 
compression affect the information flow and representation 
dynamics of neural networks during training. 

This study explores the concept of Adaptive Gradient 
Compression (AGC) as an analytical framework to understand 
and control redundancy in gradient-based learning. Instead of 
relying solely on magnitude-based thresholding, AGC 
incorporates information-theoretic measures—specifically, 
entropy and Fisher information—to guide compression. The 
intuition is that entropy captures the uncertainty or dispersion 
of gradient distributions, while Fisher information quantifies 
the sensitivity of the model parameters to perturbations in the 
loss landscape. [4], [5] 
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The primary objective of this research is to analyze the 
learning dynamics induced by entropy-based and Fisher-based 
compression mechanisms, both applied independently. 
Through controlled experiments on CIFAR-10, we measure 
not only traditional performance metrics such as accuracy and 
training loss, but also the structural properties of the gradients 
themselves—namely, sparsity, non-zero ratio (NNZ), and step 
time. These analyses provide insight into how information-
guided compression modulates the efficiency and stability of 
the training process. 

The contributions of this work are threefold. First, it 
presents a systematic analysis of entropy- and Fisher-based 
compression methods within the same adaptive framework, 
providing a unified view of how different information 
measures influence optimization. 

Second, it offers quantitative and visual evidence that 
supports the hypothesis that gradient redundancy is not 
random but structurally correlated with information flow 
across training epochs. [6] 

Communication overhead has been a primary bottleneck 
in data-parallel training, motivating compressive techniques 
that reduce gradient payload without destabilizing 
convergence. Early quantization methods, such as QSGD [7], 
provide unbiased stochastic quantization with theoretical 
guarantees, while Deep Gradient Compression (DGC) 
combines sparsification, momentum correction, and local 
gradient clipping to deliver large bandwidth reductions in 
practice [8]. Prior work on 1-bit SGD demonstrated that 
aggressive quantization can scale speech DNN training across 
commodity GPUs with minimal accuracy loss [9]. Subsequent 
studies on structured sparsification and sketching further 
formalized convergence under compressed updates [10], 
establishing a foundation for modern gradient compression 
pipelines. 

A central theme in sparsification is preserving optimizer 
dynamics despite dropping most coordinates. Top-k and 
threshold-based sparsification reduce communicated entries 
but risk bias accumulation; residual accumulation / memory 
mechanisms (e.g., Sparsified SGD with Memory) re-inject 
dropped mass in future steps to recover convergence rates 
[11]. Empirically, Sparse Communication for Distributed 
SGD showed substantial traffic reduction without 
compromising BLEU in NMT [5]. Theoretically, Error 
Feedback Fixes SignSGD proved that adding an error-
feedback buffer restores descent directions even for biased 
compressors, stabilizing a range of schemes (sign, top-k, 
quant) [12]. 

Sign-based updates achieve extreme compression by 
communicating only the sign of coordinates, sometimes with 
majority vote aggregation to mitigate noise [13]. Unbiased or 
variance-reduced quantizers (e.g., stochastic rounding in 
QSGD) provide convergence guarantees under smoothness 
assumptions [7]. These methods trade precision for scale, and 
error feedback is now recognized as essential for stability 
under high compression ratios [13]. 

Orthogonal to codec design, Local SGD reduces 
communication frequency by performing several local steps 
before averaging [14]. In federated settings, communication, 
privacy, and heterogeneity constraints spur hybrid approaches 
that mix local updates, compression, and adaptive 
aggregation; comprehensive surveys highlight open 
challenges and system-level trade-offs [15]. Large-batch 

training advances (e.g., 1-hour ImageNet) emphasize system 
co-design and optimizer tuning that interact with compression 
choices [16]. 

Evidence for over-parameterization and intrinsic 
redundancy motivates compressing not only messages but 
also models. Deep Compression unifies pruning, quantization, 
and Huffman coding to shrink trained networks substantially 
with negligible accuracy loss [9]. The Lottery Ticket 
Hypothesis suggests that sparse subnetworks (“winning 
tickets”) can train to full accuracy when properly initialized 
[2], reinforcing the view that many updates/parameters are 
superfluous to end performance. 

Information theory provides tools to reason about which 
updates matter. The Information Bottleneck (IB) perspective 
frames learning as compressing representations while 
preserving task-relevant information [17], with empirical 
analyses tracking mutual information dynamics during 
training [18]. Entropy has been used as a proxy for 
uncertainty/dispersion, guiding pruning, selection, and 
curriculum signals; when applied to gradients, entropy 
highlights redundancy patterns distinct from magnitude alone, 
offering a complementary criterion to geometric cues. 

Fisher Information quantifies parameter sensitivity to the 
data-likelihood and forms the Riemannian metric of the 
statistical manifold [19]. Curvature-aware optimization (e.g., 
natural gradient) rescales steps using Fisher (or 
approximations) to traverse valleys efficiently [19]. Practical 
second-order methods, such as Hessian-free optimization, 
exploit curvature structure to accelerate deep learning [20]. 
Using Fisher-derived scores to prioritize updates connects 
compression to local geometry: low-Fisher coordinates lie in 
flat directions and are prime candidates for suppression. 

Visualization studies reveal that sharper minima correlate 
with brittle generalization and that architectural/optimizer 
choices shape landscape geometry [21]. These insights 
motivate adaptive compression that respects layer-wise and 
epoch-wise dynamics rather than static thresholds, aligning 
selection with evolving curvature and uncertainty profiles. 

Adaptive methods (e.g., Adam [22], AdaGrad [23]) 
modulate per-coordinate learning rates based on gradient 
statistics. Compression interacts with these estimators via 
biased/noisy second moments; momentum correction, error 
feedback, and threshold scheduling are therefore key to 
preserving optimizer intent under sparsity and quantization 
[24], [13]. Large-batch regimes further entangle gradient 
variance, scaling rules, and communication budgets [16], 
suggesting that compression should co-design with optimizer 
hyperparameters. 

Finally, the study demonstrates that adaptive compression 
can serve not merely as a speed optimization tool but also as a 
lens to understand the informational dynamics underlying 
deep learning models. 

The rest of this paper is organized as follows. Section II 
describes the experimental setup, the baseline, and the two 
compression mechanisms (entropy-based and Fisher-based). 
Section III presents and analyzes the results, including training 
curves, non-zero ratios, and efficiency metrics. Section IV 
discusses the implications of information-guided gradient 
control for scalable and interpretable optimization. Section V 
concludes the study and outlines potential directions for future 
work. 
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II. PROPOSED METHOD 

A. Experimental Setup 

The experiments were conducted using the CIFAR-10 
dataset, consisting of 50,000 training and 10,000 test images 
across 10 classes. All experiments used an identical 
architecture based on ResNet-18, trained for 100 epochs with 
a batch size of 128, stochastic gradient descent (SGD) 
optimizer with momentum 0.9, and cosine annealing learning 
rate schedule starting at 0.01 [25]. 

Three independent configurations were tested: 

1. Baseline: Standard backpropagation without 
compression. 

2. Entropy-based Compression: Gradients pruned 
according to local entropy measure. 

3. Fisher-based Compression: Gradients pruned based 
on Fisher information magnitude. 

Each experiment was repeated three times to account for 
stochasticity in initialization and data shuffling. 
Training and evaluation were performed on a single NVIDIA 
RTX 6000 GPU, with all gradient operations monitored using 
custom PyTorch hooks to capture compression statistics in 
real time. The following algorithms formalize the full training 
pipeline and each compression mechanism in detail. 

B. Adaptive Gradient Compression Framework 

The Adaptive Gradient Compression (AGC) framework 

operates by intercepting gradients during the backward pass 

and applying a selective compression mechanism before the 

optimizer update. Let 𝑔𝑡 ∈ ℝ𝑛denote the gradient vector at 

time step 𝑡. 

AGC applies a mapping 𝐶(⋅) that selectively retains 

components of 𝑔𝑡deemed informative: 

𝑔𝑡̃ = 𝐶(𝑔𝑡; 𝜃𝑡) 
 

where 𝑔𝑡̃ is the compressed gradient, and 𝜃𝑡 represents 
adaptive parameters such as entropy thresholds or Fisher 
scaling factors. 

The key idea is that not all gradients carry equal 

information, and compression should preserve components 

most relevant to learning progress. Algorithm 1 outlines the 

overall training process. During the backward phase, AGC 

intercepts the gradient tensor for each layer and applies either 

the entropy-based or Fisher-based compression strategy(Lin et 

al., 2023).

Algorithm  1: Adaptive Gradient Compression Training Pipeline 

ALGORITHM 1: TRAIN_AGC 

Input: 

    D        : Dataset (train, validation/test) 

    f_θ      : Neural network model with parameters θ 

    OPT      : Optimizer (SGD/Adam) with learning rate η 

    STRAT    : {ENTROPY | FISHER}  ← selected compression strategy 

    E        : Number of epochs 

    B        : Batch size 

    CONF     : AGC configuration parameters (τ_H, τ_F, β_EMA, etc.) 

 

Output: 

    θ*       : Trained model parameters 

    LOGS     : Recorded metrics (Loss, Accuracy, NNZ, StepTime, Compression) 

 

Procedure: 

1:  Initialize model parameters θ, optimizer state OPT, and per-layer AGC statistics 

(EMA_H_ℓ, EMA_F_ℓ, …) 

2:  for e = 1 … E do 

3:      Reset epoch metrics (∑Loss, ∑Acc, ∑NNZ, ∑Time) 

4:      for each mini-batch (X, y) ∈ D.train of size B do 
5:          tic ← start_timer() 

6:          ŷ   ← f_θ(X)                          ▷ FORWARD PASS 

7:          L   ← loss(ŷ, y)                       ▷ COMPUTE LOSS 

8:          ∇   ← autograd.backward(L)             ▷ RAW GRADIENTS 

9:          for each layer ℓ do                    ▷ AGC HOOK (PER LAYER) 
10:              g_ℓ ← grad(layer ℓ) 

11:              if STRAT = ENTROPY then 

12:                  g_̃ℓ, stat_ℓ ← ENTROPY_COMPRESS(g_ℓ, CONF, EMA_H_ℓ) 

13:                  EMA_H_ℓ ← update_EMA(EMA_H_ℓ, stat_ℓ.H, β_EMA) 

14:              else   ▷ STRAT = FISHER 
15:                  g_̃ℓ, stat_ℓ ← FISHER_COMPRESS(g_ℓ, CONF, EMA_F_ℓ) 

16:                  EMA_F_ℓ ← update_EMA(EMA_F_ℓ, stat_ℓ.F, β_EMA) 

17:              end if 

18:              set_grad(layer ℓ, g_̃ℓ) 

19:          end for 

20:          OPT.step(θ)                            ▷ PARAMETER UPDATE 
21:          toc ← stop_timer() 
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22:          Compute batch metrics: 

                Loss_t, Acc_t, NNZ_t (global & per-layer), 

                StepTime_t = (toc - tic), Compression_t 

23:          Update epoch aggregators 

24:      end for 

25:      Evaluate on D.val/test → Acc_e, Loss_e 

26:      Log epoch summaries (Loss, Accuracy, NNZ ratio, information histograms, timing) 

27:  end for 

28:  return θ*, LOGS 

 

C. Entropy-Based Compression 

In the entropy-based variant, gradients are normalized to 

a probability distribution using softmax: 

𝑝𝑖 =
exp⁡(∣ 𝑔𝑖 ∣)

∑ exp⁡(∣ 𝑔𝑗 ∣)𝑗

 

 

The Shannon entropy of the gradient distribution is then 

computed as: 

𝐻(𝑔) = −∑𝑝𝑖log⁡(𝑝𝑖)

𝑖

 

 

Gradients in low-entropy regions—where the distribution is 

sharply peaked and thus less uncertain—are considered 

redundant and subject to pruning. 

A dynamic threshold 𝜏𝐻 controls the compression ratio 

adaptively based on the running average of entropy per layer. 

Gradients with contribution below this threshold are set to 

zero: 

𝑔𝑖̃ = {
𝑔𝑖 , if ∣ 𝑔𝑖 ∣> 𝜏𝐻
0, otherwise

 

 

This mechanism captures information sparsity rather than raw 

magnitude, allowing compression that respects the uncertainty 

landscape of gradients.[27] 

Algorithm 2: Entropy-Based Gradient Compression 

Function: ENTROPY_COMPRESS(g, CONF, EMA_H) 

Input: 

    g        : Gradient vector for layer ℓ (size n) 

    CONF     : {τ_H init, β_EMA, clip_max, eps, mode_thresholding} 

    EMA_H    : Exponential moving average of entropy for layer ℓ 

 

Output: 

    g ̃       : Compressed gradient (sparse) 

    stat      : {H: entropy value, k_keep: number retained, NNZ ratio} 

 

Steps: 

1:  // Normalize magnitudes into a probability distribution 

2:  a  ← |g| / (||g||_∞ + eps) 

3:  p  ← softmax(a) 

4:  H  ← −∑_i p_i * log(p_i + eps)                   ▷ Shannon entropy 
 

5:  // Adaptive entropy thresholding 

6:  if mode_thresholding = "relative" then 

7:      τ_H ← α * EMA_H + (1−α) * H 

8:  else if mode_thresholding = "percentile" then 

9:      τ_H ← percentile(|g|, q%) 

10: end if 

 

11: // Select informative gradients 

12: M  ← (|g| ≥ τ_H) 

13: g ̃← g ⊙ M 

 

14: // Prevent collapse by keeping a minimal top-k subset 

15: if sum(M) < k_min then 

16:     idx_topk ← argTopK(|g|, k_min) 

17:     set M[idx_topk] = 1 

18:     g ̃← g ⊙ M 

19: end if 

 

20: g ̃← clip(g,̃ −clip_max, clip_max) 

21: k_keep ← sum(M) ; NNZ ← k_keep / n 

22: stat ← {H: H, k_keep: k_keep, NNZ: NNZ} 

23: return g,̃ stat 
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D. Fisher Information-Based Compression 

The Fisher-based compression relies on the Fisher 
Information Matrix (FIM), which quantifies the sensitivity of 
the loss function 𝐿(𝜃) with respect to parameters 𝜃 . 
For each parameter 𝜃𝑖: 

𝐹𝑖 = 𝔼[(
∂log⁡ 𝑝(𝑥 ∣ 𝜃)

∂𝜃𝑖
)2] 

 

In practice, computing the full FIM is intractable, so we 
approximate it using the squared gradient magnitude over 
mini-batches: 

𝐹𝑖̂ ≈ 𝑔𝑖
2 

Gradients with lower Fisher information contribute minimally 
to reducing loss and can thus be compressed. 
A Fisher threshold 𝜏𝐹 is adaptively determined from the 
moving average of Fisher magnitudes across layers. 
The compressed gradient becomes: 

𝑔𝑖̃ = {
𝑔𝑖 , if 𝐹𝑖̂ > 𝜏𝐹
0, otherwise

 

 

This mechanism prioritizes gradients that are statistically 
significant to the loss curvature, offering an importance-aware 
sparsification strategy [28]. 

Algorithm 3: Fisher-Based Gradient Compression 

Function: FISHER_COMPRESS(g, CONF, EMA_F) 

Input: 

    g        : Gradient vector for layer ℓ (size n) 

    CONF     : {τ_F init, β_EMA, clip_max, eps, mode_thresholding} 

    EMA_F    : Exponential moving average of Fisher magnitude for layer ℓ 

 

Output: 

    g ̃       : Compressed gradient (sparse) 

    stat      : {F: fisher_stat, k_keep: number retained, NNZ ratio} 

 

Steps: 

1:  // Estimate Fisher Information per element 

2:  F_hat ← g ⊙ g                                   ▷  \hat{F}_i ≈ g_i^2 
 

3:  // Adaptive Fisher thresholding 

4:  if mode_thresholding = "relative" then 

5:      τ_F ← α * EMA_F + (1−α) * mean(F_hat) 

6:  else if mode_thresholding = "percentile" then 

7:      τ_F ← percentile(F_hat, q%) 

8:  end if 

 

9:  // Mask out low-importance gradients 

10: M  ← (F_hat ≥ τ_F) 

11: g ̃← g ⊙ M 

 

12: // Ensure minimum retention for stability 

13: if sum(M) < k_min then 

14:     idx_topk ← argTopK(F_hat, k_min) 

15:     set M[idx_topk] = 1 

16:     g ̃← g ⊙ M 

17: end if 

 

18: g ̃← clip(g,̃ −clip_max, clip_max) 

19: k_keep ← sum(M) ; NNZ ← k_keep / n 

20: fisher_stat ← mean(F_hat[M]) 

21: stat ← {F: fisher_stat, k_keep: k_keep, NNZ: NNZ} 

22: return g,̃ stat 

 

E. Evaluation Metrics 

To quantify the effect of adaptive compression, the 
following metrics were used: 

1. Test Accuracy: Performance on CIFAR-10 test set 

after training convergence. 

2. Training Loss: Final and minimum training loss 

achieved during optimization. 

3. Non-Zero Ratio (NNZ): Fraction of gradient 

elements retained after compression. 

4. Average Step Time: Mean computation time per 

training iteration. 

5. Compression Ratio: Ratio of baseline gradient size 

to compressed gradient size. 
 

Additionally, qualitative training dynamics plots were 

analyzed, including loss curves, accuracy trajectories, and 
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NNZ ratios, to visualize how compression affects 

convergence and stability. 

III. RESULTS AND DISCUSSION 

A. Overview 

This section presents the empirical results of three 
experimental configurations within the Adaptive Gradient 
Compression (AGC) framework: (1) the baseline model 

without compression, (2) entropy-based compression, and (3) 
Fisher-based compression. Each configuration was trained on 
the CIFAR-10 dataset using identical hyperparameters and 
architecture (ResNet-18) to ensure a fair comparison. 
Results are reported in terms of accuracy, training loss, 
sparsity ratio (non-zero gradients), computational latency, and 
compression ratio. Figures 1–4 visualize the training 
dynamics, while Tables 1 and 2 summarize the key metrics 
and qualitative findings. 

 

Table 1. Summary of quantitative results across AGC configurations 

Configuration Final Test Acc (%) Train Loss NNZ Ratio Step Time (ms) Compression (×) 

Baseline 87.80 0.0578 0.336 51.0 – 

Entropy 83.41 0.3527 0.030 85.7 33.8× 

Fisher 80.73 0.4601 0.070 67.5 14.3× 

The baseline model achieved the highest accuracy 
(87.8%) and fastest iteration speed (51 ms per step). However, 
it required dense gradient propagation (NNZ = 0.336) with no 
compression applied. The entropy-based approach attained a 
33.8× compression ratio and reduced active gradients to 3% 
while maintaining 83.4% accuracy—only 4.4% below the 
baseline. The Fisher-based method achieved 14.3× 
compression with 80.7% accuracy and slightly lower latency 
(67.5 ms) than the entropy variant. These results confirm that 
both information-guided strategies successfully reduce 
gradient redundancy while preserving most of the learning 
capacity. 

B. Training Dynamics  

1. Baseline Configuration 

 

The baseline model exhibits smooth convergence with a 

final training loss of 0.0578 and stable accuracy throughout 

the training epochs. Gradient density remains consistent 

(average NNZ = 0.336), indicating that approximately one-

third of gradient elements contribute actively at each step. 

Step-time profiles show a tight distribution around 51 ms, 

reflecting computational efficiency in the absence of 

compression overhead. This setup provides a clean control 

Figure 1 Training Analysis – Baseline Configuration 
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condition for interpreting the effect of adaptive gradient 

sparsification in subsequent experiments. 

2. Entropy-based Compression 

 

Entropy-guided AGC produced the most aggressive 

compression: NNZ decreased to 0.03, equivalent to nearly 

90% sparsity. Training loss converged to 0.3527, and test 

accuracy stabilized at 83.4%. Although step time increased to 

an average of 85.7 ms—due to entropy computation and 

masking operations — the trade-off yielded significant 

memory and communication efficiency ( ≈ 33.8 × 

reduction).  

 

Visually, the training curves reveal a steeper initial loss 

descent followed by slower convergence, suggesting that 

entropy pruning acts as a strong regularizer. Layer-wise 

inspection of gradient magnitudes shows that deeper 

convolutional blocks contribute disproportionately to the 

retained gradients, consistent with the idea that later layers 

carry more class-discriminative information. Entropy-based 

compression selectively preserves high-uncertainty 

gradients, effectively focusing computation on informative 

updates. This aligns with the information bottleneck 

hypothesis, wherein model optimization benefits from 

filtering redundant gradient information as representations 

become more compact. 

 

3. Fisher-based Compression 

 

Fisher-based compression achieved moderate sparsity 

(NNZ = 0.07) with higher stability and smoother convergence 

compared to entropy pruning. The final accuracy (80.7%) and 

training loss (0.4601) indicate that while the model learns 

more conservatively, it retains key curvature-sensitive 

gradients. Average iteration latency (67.5 ms) was lower than 

the entropy variant, since Fisher estimation requires only 

element-wise squaring ( 𝑔𝑖
2 ) instead of a full entropy 

computation. 

By preserving gradients with high Fisher information, this 

method prioritizes parameters critical to the loss curvature, 

effectively retaining sensitivity to important directions in the 

optimization landscape. The result is a more balanced trade-

off between compression efficiency and training stability. 

C. Comparative Visualization and Discussion 

1. Gradient Sparsity and Efficiency Trends 

Across the three methods, NNZ ratios exhibit distinct 

temporal signatures:  

• Baseline: remains stable around 0.33 throughout 

training. 

• Entropy: rapidly decays to 0.03 within the first 10 

epochs and stabilizes thereafter. 

• Fisher: gradually declines from 0.35 → 0.07 over 

roughly 40 epochs. 

These dynamics indicate that redundancy naturally 

increases as the model converges. Entropy compression 

captures this by adaptively reducing active gradients early, 

while Fisher compression responds more gradually, 

reflecting its curvature-based selection. 

2. Step Time and Compression Trade-Offs 

A cross-comparison of latency and compression ratios 

reveals that: 

• Baseline achieves fastest iteration but no 

compression benefit. 

• Entropy compression incurs higher per-step cost yet 

offers substantial bandwidth and memory savings. 

• Fisher compression achieves an efficient mid-

ground, maintaining reasonable sparsity and speed. 

 

Figure 2 Training Analysis – Entropy-Based Compression 
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 Overall, the cost of entropy computation (≈+34 ms per 

step) is outweighed by the reduction in gradient storage and 

transmission volume, particularly in distributed training 

contexts. 

D. Information-Theoretic Perspective 

From an information-theoretic viewpoint: 

• Entropy compression filters out predictable, low-

information gradients, leaving only updates that 

maximize uncertainty reduction. 

•  Fisher compression identifies gradients most 

informative about model sensitivity—those 

corresponding to steep regions of the loss surface. 

 

Together, they illuminate complementary facets of 

information flow in optimization: entropy governs gradient 

uncertainty, while Fisher governs gradient significance. Both 

methods demonstrate that training dynamics can be guided 

not merely by magnitude, but by information content. 

 

Entropy-based compression emerges as the most 

efficient method for aggressive redundancy reduction, while 

Fisher-based compression balances efficiency and 

robustness. 

These findings confirm that information-guided compression 

strategies offer a controllable pathway to accelerate learning 

and interpret the structure of gradient information flow. 

IV. CONCLUSION 

This paper introduced an information-theoretic framework 
for Adaptive Gradient Compression (AGC), in which 
gradients are treated as informational signals rather than 
purely numerical updates. Two independent compression 
mechanisms were analyzed: entropy-based filtering, which 
removes gradients with low informational uncertainty, and 

Fisher-based filtering, which removes gradients with low 
sensitivity to the loss curvature. Both methods were compared 
against an uncompressed baseline using the CIFAR-10 
benchmark and a ResNet-18 model. 

Experimental results demonstrated that significant 
gradient redundancy exists in conventional training. 
Entropy-based compression achieved up to 33.8× reduction in 
gradient density while maintaining over 83 % test accuracy, 
whereas Fisher-based compression achieved 14.3× reduction 
with smoother convergence and lower computational 
overhead. 

Despite minor latency increases due to entropy estimation, 
both approaches maintained stable optimization dynamics and 
preserved the majority of model performance. 
These findings verify that the flow of gradient information 
during learning can be regulated without sacrificing 
convergence, thereby offering a principled route to efficient 
and interpretable optimization. 

From an analytical standpoint, the results highlight two 
complementary perspectives on informational relevance: 
(1) entropy reflects the uncertainty of gradient activation, and 
(2) Fisher information reflects the importance of gradients to 
the local geometry of the loss landscape. Together, they 
provide a dual lens for understanding how information 
propagates through deep networks during learning. 

Future work will extend this study in several directions. 
First, layer-wise adaptive thresholds will be developed to 
refine the trade-off between compression and accuracy 
dynamically throughout training. Second, integration with 
distributed and federated learning frameworks will be 
explored to quantify real-world savings in bandwidth and 
energy consumption. Third, theoretical analysis will be 
pursued to formalize the  relationship between gradient 
information measures and mutual information in 
representation learning. Finally, hybrid strategies that 

Figure 3 Training Analysis – Fisher-Based Compression 
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combine entropy and Fisher metrics are expected to yield 
more robust and self-adjusting compression schemes capable 
of operating under non-stationary learning environments. 

In summary, the proposed AGC framework establishes a 
foundation for information-aware optimization in deep 
learning. By quantifying and controlling informational 
redundancy in gradient updates, it provides both an empirical 
and theoretical step toward more efficient, scalable, and 
interpretable neural training systems. 
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