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Abstract - The healthcare industry has benefited greatly
firom the quick development of artificial intelligence,
especially machine learning (ML). Unbalanced data is
a significant problem in medical classification, as it can
impair model performance, particularly when it comes to
identifying important minority classes like patients with
particular diseases. The purpose of this research is to
evaluate how well two ensemble-based algorithms—
Random Forest and Gradient Boosting—perform when
dealing with data imbalance in diabetes prediction. Age,
body mass index, smoking history, HbAlc level, blood
glucose level, and other demographic and medical
variables are included in the dataset, which was acquired
from Kaggle. Data preprocessing, train-test splitting,
model implementation with default parameters, and
hyperparameter tuning with Grid Search and Cross
Validation comprise the methodology. Accuracy,
precision, recall, F1-score, and AUC-ROC metrics were
used to assess the model's performance. Both models
achieved high accuracy above 97%, according to the
results. Following tuning, Random Forest achieved
97.06% accuracy, 0.974 AUC, and 0.99 positive-class
precision; however, recall somewhat declined, possibly
resulting in underdiagnosis. Gradient Boosting, on the
other hand, showed consistent performance with an
AUC of 0.9791 and an F1-score of 0.81. These results
demonstrate that model performance can be enhanced
by hyperparameter tuning; however, algorithm selection
should be based on the needs of the application,
especially in medical settings where striking a balance
between sensitivity and diagnostic precision is crucial.
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[. INTRODUCTION

The advancement of Artificial Intelligence
technology has driven progress across various
domains, including healthcare, finance,
transportation, education, and environment. A key
component of Al is Machine Learning (ML), a
method enabling computers or machines to learn
from data and make predictions or decisions
automatically. Generally, ML is categorized into
three main types: unsupervised, supervised,
and reinforcement  learning [1].  Unsupervised
learning detects hidden patterns or trends in
unlabeled data, whereas supervised learning finds
patterns  from  previously  labeled  data.
Meanwhile, reinforcement  learning focuses  on
decision-making by considering past rewards and
penalties.

Recently, supervised learning ML has become
ubiquitous in everyday applications such as email
spam filters, fraud detection, face recognition,
medical diagnosis, house price prediction, and
monthly product sales forecasting, among others [2].
However, supervised learning can be further
classified into regression and classification.
Regression is a statistical analysis used to model the
relationship between a dependent variable (to be
predicted) and one or more independent variables
(predictors). Classification is a method to categorize
data into several classes or labels based on their
characteristics.

Classification  inherently  faces  several
challenges, including missing data, outliers,
and imbalanced data [2]; [1]. Imbalanced
data frequently occurs in real-world scenarios and
represents a major problem compared to missing
data or outliers, which are easier to handle. It refers
to a condition where the data distribution among
classes is uneven, causing models to bias toward the
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majority class over the minority class [3]. This
imbalance can have severe consequences, especially
when the minority class contains critical data,
potentially yielding low classification accuracy for
such cases, as exemplified by fraud transaction
detection or disease diagnosis.

In this context, ML plays an essential role in
early disease diagnosis to support the Sustainable
Development Goals (SDGs), particularly SDG 3
(Good Health and Well-Being), indicator 3.4.1,
aiming to reduce premature mortality from non-
communicable diseases such as cardiovascular
disease, cancer, diabetes, and chronic respiratory
diseases through prevention, treatment, and mental
health promotion by 2030. Using ML models to
predict potential diabetes based on patient medical
data can accelerate early detection and enable faster,
more accurate intervention. This not only supports
clinical decision-making but also helps allocate
healthcare resources more efficiently to individuals
at high risk.

There are many classification methods to
develop models, such as logistic regression, Support
Vector Machine (SVM), K-Nearest Neighbours
(KNN), Neural Networks, Naive Bayes, Random
Forest, and Gradient Boosting [4]. Decision-tree
based models like Random Forest and Gradient
Boosting are generally better suited for imbalanced
data [5]. Based on the above problem description,
the objectives of this study are to measure the
performance of Random Forest algorithm on
imbalanced datasets  and those tuned with
hyperparameter optimization, and identify the robust
across varying imbalance ratios in the dataset.

II. PREVIOUS WORKS

Several previous studies have evaluated
ensemble methods such as Random Forest and
various Gradient Boosting variants (XGBoost,

LightGBM, CatBoost) on classification data,
particularly in healthcare fields challenged by
imbalance [6]. Bentéjac et al. compared CatBoost,
LightGBM, XGBoost, and Random Forest on
multiple datasets, concluding that CatBoost
achieved the best accuracy and AUC, while
LightGBM excelled in training speed; XGBoost
ranked mid-tier in performance and efficiency [7].

Das et al. (2020) highlighted the importance of
handling class imbalance in medical data [8]. Using
SMOTE and stratified k-fold cross-validation [9],
they compared Random Forest with Gradient
Boosting variants. Gradient Boosting generally
outperformed in Fl-score and AUC, though
imbalance treatment effects varied by dataset and
parameters. Adaptive loss functions such as
weighted loss and focal loss further improved
minority class detection performance [10].

In adapting to class imbalance, Fulazzaky et al.
(2020) evaluated balancing approaches like
Balanced Random Forest (BRF) and SMOTE-RF
across 13 binary datasets, noting BRF consistently
achieved better balanced accuracy and recall
compared to normal Random Forest, emphasizing
the need for model adaptation to unequal class
distributions [2]

Florek (2020) emphasized hyperparameter tuning
for  Gradient Boosting, concluding that
effectiveness, reliability, and ease of model use
depend heavily on tuning strategy [11]. Though not
directly compared to Random Forest, results suggest
Gradient Boosting performance can significantly
improve with optimal tuning [12].

Further research stresses the importance of model
interpretability to  understand classification
decisions, particularly critical in medicine. Methods
like SHAP values facilitate such interpretation [13]
(Tabel 2.1).

Table 1. Previous Research Related to Algorithm Evaluation on Imbalanced Datasets

Title Author Year Dataset Objective Algorithm Accuracy
Compare the
A Comparative Varl(?us performance XGBoost, CatBoost
Analysis of public of XGBoost, - 4 1 iGBM best
Gradient Boosting Bentéjac et al. [6] 2020 datas.ets (not  LightGBM, CatBoost, LightGBM
. specifically CatBoost, and
Algorithms . Random Forest fastest
mentioned) Random
Forest
Evaluating Healthcare Evaluate SMQTE’ Gradient
. ensemble stratified k-fold, .
Ensemble Models dataset with . Boosting
Das et al. [8] 2020 methods in Random Forest, .
on Imbalanced Data class . superior
Set mbal handling CatBoost, (AUC, F1)
o fmbatance imbalance LightGBM ’
Assess Balanced
Evaluating Fulazzaky et al. [15] 2020 ensemble BRF
Ensemble Learnin seconda methods Random Forest outperforms
g Ty (BRF), SMOTE- P
adapted for
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Techniques for binary imbalanced RF, Random in balanced
Class Imbalance datasets data Forest accuracy
Imbalance-
XGBoos.t: . ’ Improve XGBoost with
Leveraging Parkinson’s XGBoost . State-of-
. . weighted loss &
Weighted and Focal disease performance the-art
Wang et al.[10] 2020 . . focal loss
Losses for classification on (value not
. (Imbalance-
Imbalanced dataset imbalanced XGBoost) reported)
Classification data 008
Problems
Assess the
effectiveness Hvperparameter
Benchmarking Various real-  and efficiency tui,lli)n;pfor
Statejof-the-Ar.t Florek [11] 2020 world of XGBoost, Not directly
Gradient Boosting datasets (not  hyperparamet CatBoost compared
Algorithms detailed) er tuglng in LightGBM
Gradient
Boosting

III. PROPOSED METHOD

This study uses a quantitative approach. The data
employed is a diabetes prediction dataset obtained
from Kaggle. There are two types of variables:
dependent variable (X) and independent variables
(y). The dependent variable represents diabetes
classification. The independent variables are: gender,
age, hypertension, heart disease, smoking history,
BMI, HbAlc level, and blood glucose level.

A. Preprocessing Data dan Exploratory Data
Analysis

The study was conducted using the Python
programming language and several libraries such as
pandas, seaborn, sklearn, matplotlib, and warnings.
The first step was preprocessing and exploratory data
analysis (EDA) to clean noise and gain more insights.
Data columns irrelevant to the target variable were
removed. Checks were done for missing values (NA)
and duplicates; no missing values were found, but
duplicates were removed.

The gender column contained a category “Other,”
changed to “Female” to simplify classification using
the mode. Gender was then encoded into binary
format: "Male" as 0 and "Female" as 1. The
smoking history column was one-hot encoded to
convert categorical data into numeric formats
suitable for modeling. Data types were verified to
ensure all columns were numeric before modeling.
Distributions of gender, hypertension, heart disease,

precision-recall

F=2. —
precision+recall

and smoking history were visualized against diabetes
status. Age and diabetes relationships were also

visualized using age groups. A heatmap was created
to reveal correlations among numeric variables.

B.  Preprocessing, Modeling, dan Tuning

Further preprocessing was performed after data
splitting into train and test sets to avoid data leakage,
thereby reducing overfitting or underfitting. Numeric
and categorical features were encoded to numeric
values to facilitate modeling. Random Forest
Classifier models were utilized from the
sklearn.ensemble library. Models were trained on
training data and tested on test data to enhance
minority class prediction accuracy.

Hyperparameter tuning was conducted using
GridSearchCV or RandomSearch, starting with
default parameters. For example, Random Forest
training and prediction were done with the
RandomForestClassifier function, with subsequent
comparisons made.

C. Evaluation

After data processing, model performance
evaluation was conducted to estimate generalization
error and assess each model’s effectiveness.

The confusion matrix was used to identify
misclassifications. Classification reports calculated
Fl-score, accuracy, precision, and recall for each
model. Additionally, AUC and ROC curves assessed
the models’ ability to differentiate between positive
and negative classes.

The F1-score combines precision and recall as the
harmonic mean, providing a balanced measure,
especially useful for imbalanced datasets where
accuracy might be misleading (Kroese et al., 2024).
Although F1-score is less intuitive than accuracy, it
offers a balanced view on false positives and false
negatives.

ROC curves visualize model performance at
various thresholds by plotting true positive rate
(recall) against false positive rate. The curve’s
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proximity to the top-left corner indicates a better
model. The ideal threshold is usually selected based
on validation data to prevent overfitting.

The Area Under the ROC Curve (AUC)
quantifies overall model performance on a scale from

FP

FPR = o N

0 to 1. A higher AUC signifies better distinction
between classes. An AUC of 1 means perfect ranking
of positives above negatives; 0.5 corresponds to
random guessing. AUC is especially valuable for
imbalanced datasets as it remains unbiased by class
proportions.

IV. EXPERIMENT RESULT

A.  Evaluation of Random Forest Model
This study compares two classification
algorithms: Random Forest and Gradient Boosting,
testing each to determine which is better suited for

imbalanced data. Grid Search with 3-fold cross-
validation identified the best hyperparameter
combination based on AUC scores. AUC was
chosen to minimize false negatives, critical in
predicting diabetes accurately The default Random
Forest model performed very well detecting the
negative class (non-diabetic patients), with a recall
of 1.00 — meaning almost all non-diabetics were
correctly identified. The confusion matrix shows
17,437 true negatives and only 72 false positives
(healthy individuals misclassified as diabetic). This
indicates minimal over-diagnosis risk.

However, the model struggled detecting
diabetes patients with only 0.69 recall—detecting
about 69% of actual diabetics while missing 542
false negatives. In medical contexts, false negatives
(under-diagnosis) pose serious risks since patients
remain undiagnosed. Precision for the positive class
was good at 0.94, meaning predictions labeled
diabetic had 94% correctness. Overall, the model
showed a good balance between accuracy (0.968)
and AUC (0.9636) but left room for improvement,
notably in sensitivity to diabetics.

Table 2. Evaluation Result Before Hyperparameter Tuning

_ Predicted Negative Predicted Positive
Actual Negative 17437 72
Actual Positive 542 1179
_ Precision Recall F1-Score
Negative class 0.97 1.00 0.98
Positive class 0.94 0.69 0.79
ROC Curve - Random Forest
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Figure 1. ROC Curve of Random Forest Before Hyperparameter Tuning

Post hyperparameter tuning with Grid
Search showed improvements: overall accuracy
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and non-diabetic patients. Recall for negatives
remained near perfect (1.00), with only 8 false
positives out of 17,509 non-diabetics, meaning
minimal over-diagnosis

For positive cases, recall slightly dropped to
0.68, detecting 68% of diabetics, with false
negatives rising to 557. This decline suggests
the model became more conservative, only

labeling diabetes when confident. Precision for
positives increased to 0.99—meaning 99% of
positive predictions were correct. The F1-score
rose to 0.80, indicating a better precision-recall
balance despite the recall decrease. This model
might be more suitable for scenarios aiming to
minimize false positive diagnoses at some
expense of missed positives.

Table 3. Evaluation Result After Hyperparameter Tuning

_ Predicted Negative Predicted Positive
Actual Negative 17501 8
Actual Positive 557 1164
- Precision Recall F1-Score
Negative class 0.97 1.00 0.98
Positive class 0.99 0.68 0.80
ROC Curve - Random Forest (Best Model)
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Figure 2. ROC Curve of Random Forest After Hyperparameter Tuning

Summarizing performance changes betore and
after tuning: accuracy increased from 96.81% to
97.06%, AUC rose from 0.9635 to 0.9740, and
precision for positives dramatically improved from

0.94 to 0.99. The Fl-score also showed a slight
improvement suggesting a more balanced model.
However, recall of diabetes patients decreased,
indicating more false negatives.

Table 4. Comparison of Random Forest Performance

Metric Before Tuning After Tuning
Accuracy 0.97082 0.97087
Precision (positive) 0.99 0.98
Recall (positive) 0.68 0.69
F1-Score (positive) 0.81 0.81
AUC 0.9785 0.9791
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V.CONCLUSION

Tuning in Random Forest Algorithm improved
precision and F1-score but slightly decreased recall,
making the model more conservative and accurate in
positive diagnoses but with reduced sensitivity. This
shift strengthens the model's intrinsic characteristics,
providing a more cautious positive diagnosis.

Overall, the tuned Random Forest model
achieved excellent performance with accuracy over
97%, and an AUC score of 0.974 denotes strong
discriminative ability between diabetic and non-
diabetic individuals across thresholds. Precision for
positives reached 0.99, indicating that positive
predictions are rarely false alarms.

Despite the slight recall reduction, the increase
in precision and overall accuracy suggest that
hyperparameter tuning successfully enhanced model
reliability and applicability for medical diagnosis
where false positives are costly
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