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Abstract - The healthcare industry has benefited greatly 

from the quick development of artificial intelligence, 

especially machine learning (ML).  Unbalanced data is 

a significant problem in medical classification, as it can 

impair model performance, particularly when it comes to 

identifying important minority classes like patients with 

particular diseases.  The purpose of this research is to 

evaluate how well two ensemble-based algorithms—

Random Forest and Gradient Boosting—perform when 

dealing with data imbalance in diabetes prediction.  Age, 

body mass index, smoking history, HbA1c level, blood 

glucose level, and other demographic and medical 

variables are included in the dataset, which was acquired 

from Kaggle.  Data preprocessing, train-test splitting, 

model implementation with default parameters, and 

hyperparameter tuning with Grid Search and Cross 

Validation comprise the methodology. Accuracy, 

precision, recall, F1-score, and AUC-ROC metrics were 

used to assess the model's performance.  Both models 

achieved high accuracy above 97%, according to the 

results.  Following tuning, Random Forest achieved 

97.06% accuracy, 0.974 AUC, and 0.99 positive-class 

precision; however, recall somewhat declined, possibly 

resulting in underdiagnosis.  Gradient Boosting, on the 

other hand, showed consistent performance with an 

AUC of 0.9791 and an F1-score of 0.81.  These results 

demonstrate that model performance can be enhanced 

by hyperparameter tuning; however, algorithm selection 

should be based on the needs of the application, 

especially in medical settings where striking a balance 

between sensitivity and diagnostic precision is crucial. 
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I. INTRODUCTION 

The advancement of Artificial Intelligence 

technology has driven progress across various 

domains, including healthcare, finance, 

transportation, education, and environment. A key 

component of AI is Machine Learning (ML), a 

method enabling computers or machines to learn 

from data and make predictions or decisions 

automatically. Generally, ML is categorized into 

three main types: unsupervised, supervised, 

and reinforcement learning [1]. Unsupervised 

learning detects hidden patterns or trends in 

unlabeled data, whereas supervised learning finds 

patterns from previously labeled data. 

Meanwhile, reinforcement learning focuses on 

decision-making by considering past rewards and 

penalties. 

Recently, supervised learning ML has become 

ubiquitous in everyday applications such as email 

spam filters, fraud detection, face recognition, 

medical diagnosis, house price prediction, and 

monthly product sales forecasting, among others [2]. 

However, supervised learning can be further 

classified into regression and classification. 

Regression is a statistical analysis used to model the 

relationship between a dependent variable (to be 

predicted) and one or more independent variables 

(predictors). Classification is a method to categorize 

data into several classes or labels based on their 

characteristics. 

Classification inherently faces several 

challenges, including missing data, outliers, 

and imbalanced data [2]; [1]. Imbalanced 

data frequently occurs in real-world scenarios and 

represents a major problem compared to missing 

data or outliers, which are easier to handle. It refers 

to a condition where the data distribution among 

classes is uneven, causing models to bias toward the 
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majority class over the minority class [3]. This 

imbalance can have severe consequences, especially 

when the minority class contains critical data, 

potentially yielding low classification accuracy for 

such cases, as exemplified by fraud transaction 

detection or disease diagnosis. 

In this context, ML plays an essential role in 

early disease diagnosis to support the Sustainable 

Development Goals (SDGs), particularly SDG 3 

(Good Health and Well-Being), indicator 3.4.1, 

aiming to reduce premature mortality from non-

communicable diseases such as cardiovascular 

disease, cancer, diabetes, and chronic respiratory 

diseases through prevention, treatment, and mental 

health promotion by 2030. Using ML models to 

predict potential diabetes based on patient medical 

data can accelerate early detection and enable faster, 

more accurate intervention. This not only supports 

clinical decision-making but also helps allocate 

healthcare resources more efficiently to individuals 

at high risk. 

There are many classification methods to 

develop models, such as logistic regression, Support 

Vector Machine (SVM), K-Nearest Neighbours 

(KNN), Neural Networks, Naive Bayes, Random 

Forest, and Gradient Boosting [4]. Decision-tree 

based models like Random Forest and Gradient 

Boosting are generally better suited for imbalanced 

data [5]. Based on the above problem description, 

the objectives of this study are to measure the 

performance of Random Forest algorithm on 

imbalanced datasets  and those tuned with 

hyperparameter optimization, and identify the robust 

across varying imbalance ratios in the dataset. 

II. PREVIOUS WORKS 

Several previous studies have evaluated 

ensemble methods such as Random Forest and 

various Gradient Boosting variants (XGBoost, 

LightGBM, CatBoost) on classification data, 

particularly in healthcare fields challenged by 

imbalance [6]. Bentéjac et al. compared CatBoost, 

LightGBM, XGBoost, and Random Forest on 

multiple datasets, concluding that CatBoost 

achieved the best accuracy and AUC, while 

LightGBM excelled in training speed; XGBoost 

ranked mid-tier in performance and efficiency [7]. 

Das et al. (2020) highlighted the importance of 

handling class imbalance in medical data [8]. Using 

SMOTE and stratified k-fold cross-validation [9], 

they compared Random Forest with Gradient 

Boosting variants. Gradient Boosting generally 

outperformed in F1-score and AUC, though 

imbalance treatment effects varied by dataset and 

parameters. Adaptive loss functions such as 

weighted loss and focal loss further improved 

minority class detection performance [10]. 

In adapting to class imbalance, Fulazzaky et al. 

(2020) evaluated balancing approaches like 

Balanced Random Forest (BRF) and SMOTE-RF 

across 13 binary datasets, noting BRF consistently 

achieved better balanced accuracy and recall 

compared to normal Random Forest, emphasizing 

the need for model adaptation to unequal class 

distributions [2] 

Florek (2020) emphasized hyperparameter tuning 

for Gradient Boosting, concluding that 

effectiveness, reliability, and ease of model use 

depend heavily on tuning strategy [11]. Though not 

directly compared to Random Forest, results suggest 

Gradient Boosting performance can significantly 

improve with optimal tuning [12]. 

Further research stresses the importance of model 

interpretability to understand classification 

decisions, particularly critical in medicine. Methods 

like SHAP values facilitate such interpretation [13] 

(Tabel 2.1).

 

Table 1. Previous Research Related to Algorithm Evaluation on Imbalanced Datasets 

Title Author Year Dataset Objective Algorithm Accuracy 

A Comparative 

Analysis of 

Gradient Boosting 

Algorithms 

Bentéjac et al. [6] 2020 

Various 

public 

datasets (not 

specifically 

mentioned) 

Compare the 

performance 

of XGBoost, 

LightGBM, 

CatBoost, and 

Random 

Forest 

XGBoost, 

LightGBM, 

CatBoost, 

Random Forest 

CatBoost 

best, 

LightGBM 

fastest 

Evaluating 

Ensemble Models 

on Imbalanced Data 

Sets 

Das et al. [8] 2020 

Healthcare 

dataset with 

class 

imbalance 

Evaluate 

ensemble 

methods in 

handling 

imbalance 

SMOTE, 

stratified k-fold, 

Random Forest, 

CatBoost, 

LightGBM 

Gradient 

Boosting 

superior 

(AUC, F1) 

Evaluating 

Ensemble Learning 
Fulazzaky et al. [15] 2020 13 

secondary 

Assess 

ensemble 

methods 

adapted for 

Balanced 

Random Forest 

(BRF), SMOTE-

BRF 

outperforms 
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Techniques for 

Class Imbalance 

binary 

datasets 

imbalanced 

data 

RF, Random 

Forest 

in balanced 

accuracy 

Imbalance-

XGBoost: 

Leveraging 

Weighted and Focal 

Losses for 

Imbalanced 

Classification 

Problems 

Wang et al.[10] 2020 

Parkinson’s 

disease 

classification 

dataset 

Improve 

XGBoost 

performance 

on 

imbalanced 

data 

XGBoost with 

weighted loss & 

focal loss 

(Imbalance-

XGBoost) 

State-of-

the-art 

(value not 

reported) 

Benchmarking 

State-of-the-Art 

Gradient Boosting 

Algorithms 

Florek [11] 2020 

Various real-

world 

datasets (not 

detailed) 

Assess the 

effectiveness 

and efficiency 

of 

hyperparamet

er tuning in 

Gradient 

Boosting 

Hyperparameter 

tuning for 

XGBoost, 

CatBoost, 

LightGBM 

Not directly 

compared 

III. PROPOSED METHOD 

This study uses a quantitative approach. The data 

employed is a diabetes prediction dataset obtained 

from Kaggle. There are two types of variables: 

dependent variable (X) and independent variables 

(y). The dependent variable represents diabetes 

classification. The independent variables are: gender, 

age, hypertension, heart disease, smoking history, 

BMI, HbA1c level, and blood glucose level.  

A. Preprocessing Data dan Exploratory Data 

Analysis 

The study was conducted using the Python 

programming language and several libraries such as 

pandas, seaborn, sklearn, matplotlib, and warnings. 

The first step was preprocessing and exploratory data 

analysis (EDA) to clean noise and gain more insights. 

Data columns irrelevant to the target variable were 

removed. Checks were done for missing values (NA) 

and duplicates; no missing values were found, but 

duplicates were removed. 

The gender column contained a category “Other,” 

changed to “Female” to simplify classification using 

the mode. Gender was then encoded into binary 

format: "Male" as 0 and "Female" as 1. The 

smoking_history column was one-hot encoded to 

convert categorical data into numeric formats 

suitable for modeling. Data types were verified to 

ensure all columns were numeric before modeling. 

Distributions of gender, hypertension, heart disease, 

and smoking history were visualized against diabetes 

status. Age and diabetes relationships were also 

visualized using age groups. A heatmap was created 

to reveal correlations among numeric variables. 

B. Preprocessing, Modeling, dan Tuning 

Further preprocessing was performed after data 

splitting into train and test sets to avoid data leakage, 

thereby reducing overfitting or underfitting. Numeric 

and categorical features were encoded to numeric 

values to facilitate modeling. Random Forest 

Classifier models were utilized from the 

sklearn.ensemble library. Models were trained on 

training data and tested on test data to enhance 

minority class prediction accuracy. 

Hyperparameter tuning was conducted using 

GridSearchCV or RandomSearch, starting with 

default parameters. For example, Random Forest 

training and prediction were done with the 

RandomForestClassifier function, with subsequent 

comparisons made. 

C. Evaluation 

After data processing, model performance 

evaluation was conducted to estimate generalization 

error and assess each model’s effectiveness. 

The confusion matrix was used to identify 

misclassifications. Classification reports calculated 

F1-score, accuracy, precision, and recall for each 

model. Additionally, AUC and ROC curves assessed 

the models’ ability to differentiate between positive 

and negative classes. 

The F1-score combines precision and recall as the 

harmonic mean, providing a balanced measure, 

especially useful for imbalanced datasets where 

accuracy might be misleading (Kroese et al., 2024). 

Although F1-score is less intuitive than accuracy, it 

offers a balanced view on false positives and false 

negatives. 

ROC curves visualize model performance at 

various thresholds by plotting true positive rate 

(recall) against false positive rate. The curve’s 
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proximity to the top-left corner indicates a better 

model. The ideal threshold is usually selected based 

on validation data to prevent overfitting. 

The Area Under the ROC Curve (AUC) 

quantifies overall model performance on a scale from 

0 to 1. A higher AUC signifies better distinction 

between classes. An AUC of 1 means perfect ranking 

of positives above negatives; 0.5 corresponds to 

random guessing. AUC is especially valuable for 

imbalanced datasets as it remains unbiased by class 

proportions. 

IV. EXPERIMENT RESULT 

A. Evaluation of  Random Forest Model 

This study compares two classification 

algorithms: Random Forest and Gradient Boosting, 

testing each to determine which is better suited for 

imbalanced data. Grid Search with 3-fold cross-

validation identified the best hyperparameter 

combination based on AUC scores. AUC was 

chosen to minimize false negatives, critical in 

predicting diabetes accurately The default Random 

Forest model performed very well detecting the 

negative class (non-diabetic patients), with a recall 

of 1.00 — meaning almost all non-diabetics were 

correctly identified. The confusion matrix shows 

17,437 true negatives and only 72 false positives 

(healthy individuals misclassified as diabetic). This 

indicates minimal over-diagnosis risk. 

However, the model struggled detecting 

diabetes patients with only 0.69 recall—detecting 

about 69% of actual diabetics while missing 542 

false negatives. In medical contexts, false negatives 

(under-diagnosis) pose serious risks since patients 

remain undiagnosed. Precision for the positive class 

was good at 0.94, meaning predictions labeled 

diabetic had 94% correctness. Overall, the model 

showed a good balance between accuracy (0.968) 

and AUC (0.9636) but left room for improvement, 

notably in sensitivity to diabetics. 

 
Table 2. Evaluation Result Before Hyperparameter Tuning 

 Predicted Negative Predicted Positive 

Actual Negative 17437 72 

Actual Positive 542 1179 

 

 Precision Recall F1-Score 

Negative class 0.97 1.00 0.98 

Positive class 0.94 0.69 0.79 

  

Post hyperparameter tuning with Grid 

Search showed improvements: overall accuracy 

rose to 97.06%, and AUC increased to 0.9741, 

indicating better distinction between diabetic 

Figure 1. ROC Curve of Random Forest Before Hyperparameter Tuning 
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and non-diabetic patients. Recall for negatives 

remained near perfect (1.00), with only 8 false 

positives out of 17,509 non-diabetics, meaning 

minimal over-diagnosis 

For positive cases, recall slightly dropped to 

0.68, detecting 68% of diabetics, with false 

negatives rising to 557. This decline suggests 

the model became more conservative, only 

labeling diabetes when confident. Precision for 

positives increased to 0.99—meaning 99% of 

positive predictions were correct. The F1-score 

rose to 0.80, indicating a better precision-recall 

balance despite the recall decrease. This model 

might be more suitable for scenarios aiming to 

minimize false positive diagnoses at some 

expense of missed positives. 

 
Table 3. Evaluation Result After Hyperparameter Tuning 

 Predicted Negative Predicted Positive 

Actual Negative 17501 8 

Actual Positive 557 1164 

   

 Precision Recall F1-Score 

Negative class 0.97 1.00 0.98 

Positive class 0.99 0.68 0.80 

 
Summarizing performance changes before and 

after tuning: accuracy increased from 96.81% to 

97.06%, AUC rose from 0.9635 to 0.9740, and 

precision for positives dramatically improved from 

0.94 to 0.99. The F1-score also showed a slight 

improvement suggesting a more balanced model. 

However, recall of diabetes patients decreased, 

indicating more false negatives. 
  

Table 4. Comparison of Random Forest Performance 

Metric Before Tuning After Tuning 

Accuracy 0.97082 0.97087 

Precision (positive) 0.99 0.98 

Recall (positive) 0.68 0.69 

F1-Score (positive) 0.81 0.81 

AUC 0.9785 0.9791 

 

Figure 2. ROC Curve of Random Forest After Hyperparameter Tuning 
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V. CONCLUSION 

Tuning in Random Forest Algorithm improved 

precision and F1-score but slightly decreased recall, 

making the model more conservative and accurate in 

positive diagnoses but with reduced sensitivity. This 

shift strengthens the model's intrinsic characteristics, 

providing a more cautious positive diagnosis. 

Overall, the tuned Random Forest model 

achieved excellent performance with accuracy over 

97%, and an AUC score of 0.974 denotes strong 

discriminative ability between diabetic and non-

diabetic individuals across thresholds. Precision for 

positives reached 0.99, indicating that positive 

predictions are rarely false alarms. 

Despite the slight recall reduction, the increase 

in precision and overall accuracy suggest that 

hyperparameter tuning successfully enhanced model 

reliability and applicability for medical diagnosis 

where false positives are costly 
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