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Abstract—Beginning in December 2019, SArS-CoV-2, also 

referred to as COVID-19, quickly spread over the world. With 

two recurrent waves and a 3.3% fatality rate, COVID-19 has 

caused over 4 million cases in Indonesia. RT-PCR, antigen, and 

RT-LAMP are currently the main techniques for COVID-19 

detection and diagnosis. A CT scan is usually used for additional 

diagnosis when RT-PCR results are uncertain, but extra 

confirmation is required. The need to inform patients about the 

effects of COVID-19 on the lungs is increasing as the number of 

cases of the virus keeps rising and diagnosis and first aid 

techniques advance. The severity of COVID-19-induced 

pneumonia, which shows up as ground-glass opacities (GGO), 

which are gray patches in the lung cavity, may be seen on a 

single-slice CT scan. The degree of lung injury can be measured 

using image processing techniques. In this study, two- and three-

dimensional representations of the lungs were created utilizing 

a multi-slice CT scan and image processing techniques like 

active contour and marching cubes. The suggested approach 

produced an average volume difference of 5% and an accuracy 

of 62% based on intersection over union (IoU). 

Keywords—3D Visualization, Active Contour, Marching 

Cubes, Binary Thresholding, COVID-19 

I. INTRODUCTION  

COVID-19, caused by the SARS-CoV-2 virus that first 
appeared in December 2019, has proven to be a severe illness 
responsible for millions of deaths globally, and continues to 
pose significant health risks for those recovering from it [1]. 
Coronaviruses originated in animals like bats and transmitted 
to other animals before reaching humans [2]. COVID-19 also 
attacked the country of Indonesia and had a high impact with 
a total case of over 4 million with a mortality rate of 3.3% [3]. 
The number of COVID-19 cases in doubled during two major 
waves. The disease was peaking on January 30, 2021 with 
14,518 new cases and on July 18, 2021 with 44,721 new cases 
[4]. According to WHO, the symptoms of COVID-19 patients 
are dry cough, fever, fatigue, and loss of sensitivity of the 
senses of taste and smell. More severe symptoms include 

difficulty in breathing, loss of cognitive movement and body 
mobility, confusion, and chest pain [5]. 

There are several methods available for detecting COVID-
19 in patients. The virus can be identified through PCR 
(Polymerase Chain Reaction) tests, Lateral Flow Tests 
(LFTs), and antibody tests [6]. Current diagnostic methods for 
COVID-19 include reverse-transcription polymerase chain 
reaction (RT-PCR), real-time RT-PCR, and reverse 
transcription loop-mediated isothermal amplification (RT-
LAMP) [7]. RT-LAMP, known for its high specificity, offers 
sensitivity comparable to RT-PCR, and has been effective in 
detecting MERS-CoV. Typically, RT-PCR is used to diagnose 
patients showing COVID-19 symptoms, but for cases that are 
difficult to detect, other diagnostic tools, such as CT scans, 
can be employed [8]. 

For a more detailed evaluation of COVID-19 patients, 
further diagnostic testing can be performed using medical 
imaging techniques. These include modalities such as CT 
(Computed Tomography), MRI (Magnetic Resonance 
Imaging), Ultrasound, X-ray, and Nuclear Medicine Imaging, 
including Positron Emission Tomography (PET) [9]. CT 
imaging provides higher clarity compared to X-rays as it uses 
a rotating light source [9]. CT scans help eliminate the need 
for exploratory surgery [9]. In COVID-19 patients CT scans 
often show gray or white patches in the lungs referred to as 
ground-glass opacity (GGO) as well as other abnormalities 
such as enlarged blood vessels, bilateral irregularities, lower 
lobe involvement, and posterior predilection [10]. To utilize 
CT scan images effectively an image processing step called 
segmentation is required. 

Segmentation is the process of dividing an image into 
regions with similar properties, such as gray level, color, 
texture, brightness, and contrast [11]. The purpose of 
segmentation is to separate an object in an image. In medical 
imaging, segmentation is used to study anatomical structures, 
locate tumors or lesions, calculate tumor volume, and assist in 
patient treatment planning. Segmentation methods include 
amplitude thresholding, edge detection, active contours, and 
region-based techniques [11]. 

Segmentation can be applied to both two-dimensional and 
three-dimensional images such as those from PET scans, MRI, 
and CT scan. Three-dimensional segmentation involves 
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stacking two-dimensional images and reconstructing them in 
three-dimensional space which allows for visualization and 
quantification of the scanned subjects [12]. It is possible to 
observe the organs and tissues of COVID-19 patients using 
CT scan, allowing for an evaluation of lung damage. CT scan 
images demonstrate various patterns of lung damage caused 
by COVID-19, which can be categorized into four main types. 
The first category, known as Typical Appearance, is 
characterized by peripheral and bilateral ground-glass 
opacities (GGO) accompanied by intralobular lines, 
commonly referred to as crazy paving. The second category, 
Indeterminate Appearance, lacks the typical features but 
presents with multifocal, diffuse, perihilar, or unilateral GGO, 
with or without consolidation. The third category, Atypical 
Appearance, is distinguished by the absence of typical or 
indeterminate features, displaying consolidation without 
GGO. Lastly, the category Negative for pneumonia refers to 
cases where there are no CT features indicative of pneumonia, 
such as typical, indeterminate, or atypical appearances. 

The appearance of COVID-19 on chest CT images follows 
a somewhat predictable pattern over time [13]. Asymptomatic 
patients with SARS-CoV-2 often have normal chest CT 
results and some symptomatic patients may also show normal 
findings. Moreover, lung abnormalities on chest CT are not 
specific to COVID-19 [13]. Owing to these limitations, chest 
CT should not be used independently to diagnose or rule out 
COVID-19. RT-PCR test results remain the diagnostic 
standard and a critical part of clinical decision-making [13]. 

Further identification of COVID-19 features in CT scans 
may be necessary and this is where segmentation and 
reconstruction come into play. Segmentation is done with the 
main objective of isolating a part that you want to focus on 
from other parts like separating lung images from elements 
such as the heart, ribs, and skin, and to isolate GGO nodules 
from the lungs [14].  High accuracy (94.6%), sensitivity 
(90.2%), and specificity (95.9%) were achieved using an 
active shape model. Segmentation by Sri Widodo demonstre 
how segmentation separates specific elements for further 
analysis [14]. 

The marching cubes algorithm can be used to visualize 
segmentation results in three dimensions. In a study by 
Shuaibu Ali Gombe, the ITK/VTK/QT framework was used 
for lung segmentation and visualization in order to enhance 
lung cancer diagnosis accuracy by segmenting and visualizing 
lung tissue in three dimensions. Ali Gombe used a region-
based segmentation technique to separate lung structures from 
other components like the ribs and heart. The marching cubes 
algorithm then applied for 3D visualization. Ali Gombe 
recommended exploring other segmentation techniques for 
improved results such as automatic and semi-automatic 
methods [15]. 

The aim of this study is to develop an algorithm capable 
of segmenting lung tissue from CT thorax images, isolating 
ground-glass opacity (GGO) regions, and creating a 3D model 
that can be visualized using any 3D software or printed with a 
3D printer. By utilizing an active contour model created by 
Chan-Vese and binary segmentation, it is theoretically 
possible to generate a lung and GGO nodule segmentation 
mask and use marching cubes to create a 3D model of the 
infected lung volume. 

II. PROPOSED METHOD 

As seen in Figure 1, the system suggested in this study 
consists of multiple steps. After being extracted from the 
Harvard Dataverse, the DICOM images undergo a pre-
processing step. Finding the foreground and background 
objects, contrast stretching, adaptive histogram equalization, 
and non-linear filtering are all part of the pre-processing step. 
To distinguish the lung regions from other structures including 
the ribs, spine, skin, and tissues, the segmentation step uses 
active contour modeling, threshold-based segmentation, and 
morphological processes. The marching cubes algorithm, 
picture orientation, and STL output file creation are all part of 
the three-dimensional reconstruction step. This makes it 
possible to turn the segmented data into a three-dimensional 
model that can be printed out and used for interactive point 
cloud plot viewing. 

 

Fig. 1. Flowchart Diagram of Research. 

  
(a)                                     (b) 

 
(c) 

Fig. 2. (a) Ground-Glass Opacity in a Peripheral Distribution, (b) Crazy-

Paving Pattern Highlighted, (c) Consolidation Surrounded by Ground-Glass 

Opacities [13]. 
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A. Data 

The dataset utilized in this study consists of three subjects 
exhibiting characteristic manifestations of COVID-19. These 
include ground-glass opacity with a peripheral distribution, as 
illustrated in Figure 2(a), a crazy-paving pattern, as depicted 
in Figure 2(b), and consolidation surrounded by ground-glass 
opacities, as shown in Figure 2(c). The inclusion of subjects 
with confirmed COVID-19-related lung damage is essential, 
as the primary objective of this research is to detect and 
analyze the extent of lung damage caused by the virus, rather 
than merely identifying the infection status. 

B. Pre-processing 

Pre-processed DICOM files were obtained from the 
Harvard Dataverse [16], an open-access repository. RT-PCR 
was used to confirm that every individual in this repository 
tested positive for COVID-19. The pre-processing phase 
concentrates on improving the DICOM pictures to attain the 
best possible segmentation circumstances, which call for 
distinct sharpness and grayscale value distinction. This was 
accomplished by applying a non-linear filter, contrast 
stretching, and adaptive histogram equalization. 

1) Contrast Stretching 
Choosing the ideal histogram range is essential for 

segmentation. The distribution of the histogram is equalized 
using adaptive histogram equalization (AHE), but the range of 
the histogram is not increased. Contrast stretching improves 
the image's intensity values by expanding the histogram range 
[17]. 

2) Adaptive Histogram Equalization 
Low contrast is a common problem with images, making 

them less usable. Adaptive Histogram Equalization (AHE) 
improves contrast by evaluating the image's cumulative 
distribution function (CDF) and modifying the histogram, 
which enhances darker sections while minimizing too bright 
spots. 

3) Non-linear Filter 
A non-linear filter is used to remove noise and interference 

present in the CT scan images. The image will be subjected to 
a median filter is used to remove speckle noise and salt-and-
pepper noise which are the common artifacts in CT scans that 
can reduce the accuracy level and damage the segmentation 
resuls. 

4) Segmentation 
Segmentation is the main component of this system. It 

involves isolating the region of interest (in this case, the lungs 
and visible ground-glass opacities) from other anatomical 
structures. The segmentation process is divided into three 
stages: binary segmentation, active contour modeling, and 
morphological operations. 

5) Active Contour 
Active contour modeling is employed to remove skin, 

bones, heart, and others as well as isolate the lungs from 
internal organs. The active contour used in this study is the 
Chan-Vese model, also known as the active contour without 
edges (ACWE). Chan-Vese's active contour algorithm is 
derived from the segmentation problem formulated by 
Mumford and Shah. Edge detectors are used, in classic active 
contour and snake models depending on image gradients, to 
stop curves at the desired object boundary from expanding. On 
the other hand, the duration of the active Chan-Vese contour 
termination is independent of the image gradient [18][19]. The 

Chan-Vese method depends on minimizing segmentation-
based energy, with the initial contours of this method using a 
checkerboard pattern [20]. 

6) Threshold Segmentation 
Threshold-based segmentation is performed to isolate 

ground-glass opacities within the lung region. If this step were 
performed before lung isolation, other tissues with similar 
grayscale values to the opacities might also be segmented and 
complicating the process. This segmentation is done by setting 
a boundary from a white-black value of an image and the value 
that is behind a boundary will be removed and made black, 
while the value that prioritizes the boundary will be set and 
made white. This segmentation will give mask results from 
GGO on the lungs of COVID-19 patients 

7) Morphological Operation 
Morphological operations, such as dilation and erosion, 

are conducted to finalize the segmentation process. These 
operations address imperfections such as unknown nodules or 
segmented noise by refining the results. The output is a binary 
image prepared for three-dimensional reconstruction. 

C. 3D Reconstruction Process 

After the segmentation process is complete, the next step 
is visualization and three-dimensional reconstruction. This 
process employs two primary methods which are volume-
based modeling using Lewiner's marching cubes algorithm 
and point cloud plotting. The point cloud method is utilized 
due to the large amount of data so it allows for an initial 
interactive view before performing a volume reconstruction. 
Marching Cubes is an algorithm used to reconstruct from a 
binary image and plot the three-dimensional information in 
three-dimensional space. This binary image is an array with 
binary numbers that can be processed by the marching cube to 
reconstruct it according to the dimensions of the per-slice 
image [21]. Marching cubes uses the points of each array an 
array in two dimension as vertices to create a face, and then 
uses the surrounding points above or below in the three 
dimensional space to create a voxel. The result of this 
reconstruction is a three-dimensional view of the image that 
can be seen in Figure 3. 

 

Fig. 3. 3D Reconstruction Using Marching Cubes 

D. Data Analysis 

The reconstructed data will be analyzed using 3D Slicer 
software. Volumetric analysis and visualization will be 
conducted through the Lung CT Analyzer project. Lung 
segmentation can be performed either by placing a few 
manual markers on the lung or by using a deep learning-based 
lung and lobe segmentation algorithm. The software also 
supports a sensitive, manually assisted growcut method for 
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airway segmentation. The Lung Analyzer identifies five 
regions of interest using thresholding and grow-from-seed 
techniques: bulla/emphysema, inflated, infiltrated, collapsed, 
and lung vessel. The volume of each segment is calculated 
through segment statistics. The results are overlaid onto 2D 
views using standard color codes: black for bulla, blue for 
inflated, yellow for infiltrated, pink for collapsed, and red for 
vessels. In addition, 3D spatial reconstructions of the affected 
lung segments are available for further analysis. 

E. Data Validation Process 

The data will be evaluated using a confusion matrix to 
assess the accuracy of the segmentation. The ground truth for 
the segmentation results will be established using another 
application, specifically 3D Slicer, which will serve as the 
primary reference. The confusion matrix will allow for the 
comparison of two segmentation outcomes: one produced 
using the proposed research method and the other using the 
3D Slicer method. True positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) findings will be 
examined in order to assess how well the two approaches 
compare. FP denotes cases identified by the proposed method 
but not by the reference method, FN denotes cases that the 
proposed method misses but are detected by the reference 
method, TP denotes cases accurately detected by both 
methods, and TN involves cases where neither method detects 
the condition. Table 1 provides the confusion matrix. 

 

Key performance metrics will be calculated to evaluate the 
overall effectiveness of the proposed method. These metrics 
provide a comprehensive assessment of how well the 
segmentation approach identifies the true regions of interest 
and minimizes errors. Table 2 presents these metrics which 
derived from the confusion matrix values enabling a clearer 
understanding of the method's reliability compared to the 
reference segmentation. 

 

III. EXPERIMENTAL RESULTS 

This chapter presents the results derived from the 
methodology outlined in the previous chapter. The study 
includes three subjects, with data obtained from the Harvard 
Dataverse, as depicted in Figure 4. Subject ID 94028 is 

illustrated in Figure 4(a), subject ID 13758 is presented in 
Figure 4(b), and subject ID 22052 is highlighted in Figure 4©. 

   
(a)                              (b) 

 
(c)  

Fig. 4. The subjects used in this research: subject ID 94028 (a), subject ID 

13758 (b), and subject ID 22052 (c), all accessible via the Harvard 

Dataverse. 

The lung images exhibit typical characteristics of COVID-
19 with the existence of ground-glass opacities for most part 
and consolidation as seen in Figure 4(a) in the right lobe. The 
crazy-paving pattern is visible in the left lobe as shown in 
Figure 4(b). Given these observations this study will proceed 
with these subjects. Contrast stretching was applied to 
enhance and redistribute the intensity values in the histogram, 
as illustrated in Table 3. This technique highlighted the 
ground-glass opacities (GGO) and the crazy-paving pattern 
which are crucial for detection. To equalize the histogram with 
the lung volume, encompassing the diseased and healthy parts, 
adaptive histogram equalization (AHE) was utilized. 
Additionally, it decreased noise; a higher PSNR denoted 
higher-quality images. Following these preparation processes, 
pictures were prepared for the ACWE algorithm's 
segmentation. 

After the contrast correction stage, the image still has noise 
and artifacts that come with the CT Scan modality. This stage 
is also to make the segmentation algorithm easier to identify 
the edges of the lungs, body, and air using the median filter. 
This step will produce an image with a clearer lung content 
because all parts of the lung that differ slightly in pixels will 
merge into one color that is more similar as shown in Table 3, 
the kernel used is 5x5 because the kernel gives the highest 
PSNR value compared to 3x3 and 7x7, and in the 3x3 kernel 
there is still a little noise that has not been seen, and the 7x7 
kernel begins to remove details and information from the 
image. 

The ACWE is used for segmentation. This morphological 
active contour uses a checkerboard pattern as the initialization 
of the contour, and each iteration will shrink following the 
edge of the existing image, where in this image is the edge of 
the body cavity and the body itself. The more iteration the 
ACWE has, the better the result will be. In Figure 5, after the 
29th iteration there are no more changes in the image, but we 
keep it in the range of 35 as the other subjects might need more 
iteration in order to get the best result. 

TABLE I.  CONFUSION MATRIX 

 

True Values 

TRUE FALSE 

Prediction 
TRUE True Positive False Positive 

FALSE False Negative True Negative 

 

TABLE II.  FORMULAS FOR CONFUSION MATRIX 

Metric Formula Definition 

Accuracy 
TP +  TN

TP +  FP +  FN +  TN
 

Proportion of 
observations that 

are true 

Sensitivity 
TP

TP +  FN
 

Proportion of 

positive cases that 

were predicted to 
be correct 

Specificity 
TN

TN +  FP
 

Proportion of true 
predictive 

negative cases 
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The infected lung image is obtained by the segmentation 
using the hounsfield window between -600 hounsfield units 
and window width of 1500 hounsfield units [24][25][26]. 
These values were used to filter the histogram, retaining only 
the data between the white values of -600 and 1500.  

After this process, morphological filtering was repeated. As 
shown in Figure 5, some lung vessels were mistakenly 
segmented as part of the infected lung, though this is also 
evident in the ground truth, indicating a marginal error in the 
automatic segmentation process for COVID-19-affected 
lungs. The segmented images were used to reconstruct a 3D 
model of each lung using Lewiner’s marching cubes algorithm 

for volumetric rendering, and point cloud plotting for a lighter, 
interactive 3D view of the lungs. Both methods successfully 
visualized the infected portions of the lung, marked in yellow, 
while the uninfected areas were marked in blue. The results 
were validated using the confusion matrix method and 
intersection over union, with comparisons made to 
groundtruth obtained via 3D Slicer using the 
LungCTAnalyzer and LungCTSegmenter tools. COVID-19 
masking results were extracted, and comparisons were 
performed. 

As seen in Table 4, the first patient had a relatively high 
accuracy but a much lower similarity index of 42%. This is 

TABLE III.  CONTRAST STRETCHING AND ADAPTIVE HISTOGRAM EQUALIZATION RESULTS 

No. Image Histogram PSNR 

1. 

  

8.42 

2. 

  

38.32 
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(a)                                                                         (b) 

Fig 5.  Evolution of segmentation using ACWE (a) and the final segmentation result using the ACWE mask (b) 
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due to the presence of tissue in the right lobe with similar 
white levels to other body tissues, making it challenging for 
the active contour algorithm to differentiate between lung and 
non-lung tissue. The other patients had similarity index values 
of 67.8% and 77.4%, indicating that their segmentation results 
were closer to the actual lung margins and infected regions, as 
their lungs did not exhibit a high concentration of similarly 
dense tissues. The confusion matrix results show a higher 
accuracy due to the calculation of black pixels in the image. If 
the image is used in its original dimensions, the abundance of 
black pixels can inflate the accuracy. To mitigate this, the 
images were cropped using bounding boxes around the lungs, 
minimizing the presence of black pixels that could artificially 
increase the accuracy value. As a result, the cropped 
dimensions for patient ID 94028 were 300, 270, and 350; for 
patient ID 13758, 140, 230, and 280; and for patient ID 22052, 
153, 280, and 340, where the first number represents the 
number of slices, the second the length, and the third the 
height. A physical 3D-printed model was additionally created 
for each subject, with representations provided in Figure 6. 
The model for patient ID 94028 is depicted in Figure 6(a), 
followed by the model for patient ID 13758 in Figure 6(b), and 
the model for patient ID 22052 in Figure 6©. 

 

IV. CONCLUSION 

Using the active contour method, this work suggests a 
system for two-dimensional segmentation and three-
dimensional reconstruction for the display of lung CT scan 
images of COVID-19 patients. 3D Slicer software was used to 
validate the data, which came from the Harvard Dataverse 
archive. The outcome of this study is a three-dimensional 
reconstruction of lung models from COVID-19 patients, each 

with distinct markings. The images of patients with IDs 
94028, 13758, and 22052 achieved confusion matrix accuracy 
values of 92%, 96%, and 97%, respectively, and intersection 
over union similarity indices of 42%, 67%, and 77%. The 
models created using the marching cubes algorithm can be 
3D-printed for direct visualization, while the point cloud plot 
provides a rough visualization of the damaged lung areas. This 
visualization can assist patients in understanding the condition 
of their lungs. 

  
(a)                                   (b) 

 

 
(c) 

Fig. 6.  3D printed lung model of subject ID 94028 (a), subject ID 13758 

(b), and subject ID 22052 (c). 

REFERENCES 

[1] R. Dhama, S. Khan, R. Tiwari, et al., “Coronavirus disease 2019–
COVID-19,” Clin. Microbiol. Rev., vol. 33, no. 4, pp. e00028-20, Jun. 
2020, doi: 10.1128/CMR.00028-20. 

[2] S. Chaplin, “COVID-19: a brief history and treatments in 
development,” Prescriber, vol. 31, pp. 23–28, 2020, doi: 
10.1002/psb.1843. 

[3] "Coronavirus Cases," [Online]. Available: 
https://www.worldometers.info/coronavirus/country/indonesia/. 
[Accessed: Sep. 27, 2021]. 

[4] E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard 
to track COVID-19 in real time,” The Lancet Infect. Dis., vol. 20, no. 
5, pp. 533–534, 2020. 

[5] "Coronavirus," [Online]. Available: https://www.who.int/health-
topics/coronavirus#tab=tab_3. [Accessed: Dec. 14, 2021]. 

[6] D. Jarrom, L. Elston, J. Washington, et al., “Effectiveness of tests to 
detect the presence of SARS-CoV-2 virus, and antibodies to SARS-
CoV-2, to inform COVID-19 diagnosis: a rapid systematic review,” 
BMJ Evid.-Based Med., vol. 27, pp. 33–45, 2022. 

[7] P. Zhai, Y. Ding, X. Wu, J. Long, Y. Zhong, and Y. Li, “The 
epidemiology, diagnosis and treatment of COVID-19,” Int. J. 
Antimicrob. Agents, vol. 55, no. 5, 2020. 

[8] S. Salehi, A. Abedi, S. Balakrishnan, and A. Gholamrezanezhad, 
“Coronavirus disease 2019 (COVID-19): A systematic review of 
imaging findings in 919 patients,” Am. J. Roentgenol., vol. 215, no. 1, 
pp. 87–93, 2020. 

[9] Z. Hughes, “Medical imaging types and modalities,” [Online]. 
Available: https://www.ausmed.com/cpd/articles/medical-imaging-
types-and-modalities. [Accessed: Dec. 14, 2021]. 

TABLE IV.  DATA VALIDATION USING CONFUSION MATRIX AND  

INTERSECTION OVER UNION 

No 3d model visualization 
Confusion 

Matrix 
Intersection 
Over Union 

1 

 

Accuracy = 
0.9245 

0.42485410

976746185 

Specificity = 

0.9413 

Sensitivity = 

0.9158 

2 

 

Accuracy = 

0.962 

0.67907145

0577287 

Specificity = 

0.80 

Sensitivity = 

0.980 

3 

 

Accuracy = 

0.969 

0.77478241

14302613 

Specificity = 

0.986 

Sensitivity = 

0.8529 

 



7 

[10] T. C. Kwee and R. M. Kwee, “Chest CT in COVID-19: What the 
radiologist needs to know,” Radiographics, vol. 40, no. 7, pp. 1848–
1865, 2020. 

[11] N. Sharma and L. M. Aggarwal, “Automated medical image 
segmentation techniques,” J. Med. Phys., vol. 35, no. 1, p. 3, 2010. 

[12] "What is 3D Image Segmentation and How Does It Work?," [Online]. 
Available: https://www.synopsys.com/glossary/what-is-3d-image-
segmentation.html. [Accessed: Dec. 14, 2021]. 

[13] T. C. Kwee and R. M. Kwee, “Chest CT in COVID-19: What the 
radiologist needs to know,” Radiographics, vol. 40, no. 7, pp. 1848–
1865, 2020. 

[14] S. Widodo and Wijayanto, “Lung field segmentation on computed 
tomography,” Kursor J., pp. 99–108, 2013. 

[15] S. A. Gombe, “3D visualization and segmentation of lungs using 
ITK/VTK/Qt framework,” Master’s Thesis, Tallinn Univ. Technol. 
Sch. Inf. Technol., 2017. 

[16] S. M. Mostafavi, “COVID19-CT-Dataset: An open-access chest CT 
image repository of 1000+ patients with confirmed COVID-19 
diagnosis,” Harvard Dataverse, V1, 2021, doi: 
10.7910/DVN/6ACUZJ. 

[17] K. Firdausy, T. Sutikno, and E. Prasetyo, “Image enhancement using 
contrast stretching on RGB and IHS digital image,” TELKOMNIKA 
(Telecommun. Comput. Electron. Control.), vol. 5, p. 45, 2007, doi: 
10.12928/telkomnika.v5i1.1335. 

[18] T. Chan and L. Vese, “An active contour model without edges,” in 
Scale-Space Theories in Computer Vision, M. Nielsen, P. Johansen, O. 
F. Olsen, and J. Weickert, Eds. Berlin, Heidelberg: Springer, 1999, vol. 
1682, pp. 141–151, doi: 10.1007/3-540-48236-9_13.  

[19] P. Getreuer, “Chan-Vese segmentation,” Image Process. On Line, vol. 
2, pp. 214–224, 2012.  

[20] K. H. Rahouma, S. M. Mabrouk, and M. Aouf, “Lung cancer diagnosis 
based on Chan-Vese active contour and polynomial neural network,” 
Procedia Comput. Sci., vol. 194, pp. 22–31, 2021.  

[21] K. A. Mandaliana, T. Harsono, and R. Sigit, “3D visualization and 
reconstruction of lung cancer images using marching cubes algorithm,” 
in 2019 Int. Electron. Symp. (IES), 2019, pp. 143–147, doi: 
10.1109/ELECSYM.2019.8901667.  

[22] R. Bumm, A. Lasso, N. Kawel-Böhm, A. Wäckerlin, P. Ludwig, and 
M. Furrer, “First results of spatial reconstruction and quantification of 
COVID-19 chest CT infiltrates using lung CT analyzer and 3D slicer,” 
Br. J. Surg., vol. 108, Suppl. 4, May 2021, doi: 
10.1093/bjs/znab202.077.  

[23] E. Lanza, R. Muglia, I. Bolengo, et al., “Quantitative chest CT analysis 
in COVID-19 to predict the need for oxygenation support and 
intubation,” Eur. Radiol., vol. 30, no. 12, pp. 6770–6778, 2020, doi: 
10.1007/s00330-020-07013-2.  

[24] K. Li, Y. Fang, W. Li, et al., “CT image visual quantitative evaluation 
and clinical classification of coronavirus disease (COVID-19),” Eur. 
Radiol., vol. 30, no. 8, pp. 4407–4416, 2020, doi: 10.1007/s00330-020-
06817-6.  

[25] C. S. Guan, Z. B. Lv, S. Yan, et al., “Imaging features of coronavirus 
disease 2019 (COVID-19): Evaluation on thin-section CT,” Acad. 
Radiol., vol. 27, no. 5, pp. 609–613, 2020, doi: 
10.1016/j.acra.2020.03.002. 

[26] W. Lu, J. Wei, T. Xu, et al., “Quantitative CT for detecting COVID‑19 
pneumonia in suspected cases,” BMC Infect. Dis., vol. 21, no. 836, 
2021, doi: 10.1186/s12879-021-06556-z.  

 

 

 


