The Influencing factors of Female Passenger Background in Online Transportation with Perceived Ease of Use

Authors

  • Meyliana Meyliana Bina Nusantara University
  • Surjandy Surjandy Bina Nusantara University
  • Erick Fernando Bina Nusantara University
  • Firman Anindra Universitas Nasional

DOI:

https://doi.org/10.21512/comtech.v10i1.5713

Keywords:

female passenger, online transportation, background, perceived ease of use

Abstract

This research aimed to explore the correlation or influence factors between the background of female passengers with perceived ease of use factors in Online Transportation Application (OTA). This research was explanatory and descriptive (causal) research. The respondents were the female users of OTA. The total of respondents was 408 people. SPSS applications were used to process the data. Then, the cross-tabulation was to find the correlation or influence factors. In the end, the researchers find 19 factors that are essential for future research.

Dimensions

Plum Analytics

Author Biographies

Meyliana Meyliana, Bina Nusantara University

Information System Department

Surjandy Surjandy, Bina Nusantara University

Information Systems Departmen

Erick Fernando, Bina Nusantara University

Information Systems Department

Firman Anindra, Universitas Nasional

Departement Teknik Informtika

References

Amajida, F. D. (2016). Kreativitas digital dalam masyarakat risiko perkotaan: Studi tentang ojek online “Go-Jek” di Jakarta. Informasi, 46(1), 115-128. DOI: 10.21831/informasi.v46i1.9657

Gao, Y., & Chen, J. (2019). The risk reduction and sustainable development of shared transportation: The Chinese online car-hailing policy evaluation in the digitalization era. Sustainability, 11(9), 2596.https://doi.org/10.3390/su11092596

Griffith, D. A., Van Esch, P., & Trittenbach, M. (2018). Investigating the mediating effect of Uber’s sexual harassment case on its brand: Does it matter? Journal of Retailing and Consumer Services, 43(July), 111-118. https://doi.org/10.1016/j.jretconser.2018.03.007

Haryanto, A. T. (2017). Mayoritas pengguna Go-Jek perempuan single. Retrieved from https://inet.detik.com/cyberlife/d-3496233/mayoritas-pengguna-gojek-perempuan-single

Kent State University Libraries. (2019). SPSS tutorials: Pearson correlation. Retrieved from https://libguides.library.kent.edu/SPSS/PearsonCorr

Landau, S., & Everitt, B. S. (2004). A handbook of statistical analyses using SPSS. United States of America: Chapman & Hall.

Neuman, W. L. (2014). Social research methods: Qualitative and quantitative approaches. United States of America: Pearson Education Limited.

Nailufar, N. N. (2017). Penumpang Grabbike yang dilecehkan trauma pesan ojek “online”. Retrieved from https://megapolitan.kompas.com/ read/2017/05/17/16451131/penumpang.grabbike.yang.dilecehkan.trauma.pesan.ojek.online.

Purnama, R. (2018). Polisi kritisi mental pengemudi ojol, harus ada tes psikologi. Retrieved from https://www.cnnindonesia.com/teknologi/20180809005100-384-320739/polisikritisi-mental-pengemudi-ojol-harus-ada-tespsikologi

Salman, G. (2018). Pengemudi taksi online di Surabaya setubuhi gadis SMA di dalam mobil. Retrieved from https://regional.kompas.com/read/2018/11/16/15420041/pengemudi-taksionline-di-surabaya-setubuhi-gadis-sma-di-dalammobil

Sarriera, J. M., Álvarez, G. E., Blynn, K., Alesbury, A., Scully, T., & Zhao, J. (2017). To share or not to share: Investigating the social aspects of dynamic ridesharing. Transportation Research Record, 2605(1), 109-117. https://doi.org/10.3141/2605-11

Septiani, R., Handayani, P. W., & Azzahro, F. (2017). Factors that affecting behavioral intention in online transportation service: Case study of GO-JEK. Procedia Computer Science, 124, 504-512. https://doi.org/10.1016/j.procs.2017.12.183

Silalahi, S. L. B., Handayani, P. W., & Munajat, Q. (2017). Service quality analysis for online transportation services: Case study of GO-JEK. Procedia Computer Science, 124, 487-495. https://doi.org/10.1016/j.procs.2017.12.181

Standing, C., Standing, S., & Biermann, S. (2019). The implications of the sharing economy for transport. Transport Reviews, 39(2), 226-242. https://doi.org/10.1080/01441647.2018.1450307

Surjandy, J. (2017). Do college students use e-book with smartphone? (Study for college student’s subject in information technology). In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 2).

Surjandy, Ernawaty, Listyo, P., Fernando, E., Savina, G., & Tirtamulia, L. M. (2018). Technology risk in financial technology at online transportation systems. In 2018 International Conference on Information Management and Technology (ICIMTech) (pp. 149-154).

Surjandy, Fernando, E., Meyliana, Condrobimo, A. R., Edbert, I. S., & Vivien. (2018). The safe and trust factors of mobile transportation system for user behavior in Indonesia. In 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 449–452).

Wahyuningtyas, S. Y. (2016). The online transportation network in Indonesia: A pendulum between the sharing economy and ex ante regulation. Competition and Regulation in Network Industries, 17(3-4), 260-280. https://doi.org/10.1177/178359171601700304

Wang, H., & Kimble, C. (2016). How external factors influence business model innovation: A study of the Bosch Group and the Chinese automotive aftermarket. Global Business and Organizational Excellence, 35(6), 53-64. https://doi.org/10.1002/joe.21712

Yang, S., Song, Y., Chen, S., & Xia, X. (2017). Why are customers loyal in sharing-economy services? A relational benefits perspective. Journal of Services Marketing, 31(1), 48-62. https://doi.org/10.1108/JSM-01-2016-0042

Zhang, S., & Wang, Z. (2016). Inferring passenger denial behavior of taxi drivers from large-scale taxi traces. PLOS ONE, 12(2), 1-21. https://doi.org/10.1371/journal.pone.0165597

Downloads

Published

2019-06-30

Issue

Section

Articles
Abstract 918  .
PDF downloaded 254  .