Temperature Forecast at Djuanda International Airport using ARIMA, ANN, and Hybrid ARIMA-ANN

Authors

Keywords:

Artificial Neural Network (ANN) Model, Forecasting, Weather, Surabaya

Abstract

This research evaluates the performance of Artificial Neural Network (ANN) models in forecasting temperature at Djuanda Airport, comparing them with the traditional Autoregressive Integrated Moving Average (ARIMA) model and a hybrid ARIMA–ANN approach. Although statistical models such as ARIMA are widely applied, their capacity to capture nonlinear dynamics in tropical climate conditions is limited, particularly when the data exhibit irregular fluctuations that linear models cannot adequately represent. Forecasting temperatures in tropical airport settings, which is crucial for flight planning, operational safety, and the reliability of aviation operations, remains relatively underexplored. This gap underscores the importance of alternative modeling techniques that can effectively address nonlinear relationships. Using one year of observed data, the models are evaluated with three accuracy metrics: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE). The ANN model achieves the lowest error values (MAE 0.7630, MAPE 2.7067%, RMSE 1.0074) compared to both ARIMA and hybrid approaches. The metrics and the testing graph collectively indicate that ANN has a stronger ability to capture nonlinear temperature dynamics in tropical contexts. Nonetheless, the findings must be interpreted with caution due to the limited dataset and single case study. These limitations highlight the need for extended data and alternative architectures to improve forecasting accuracy and strengthen support for safer aviation operations.

Dimensions

References

Amaly, M. H., Hirzi, R. H., & Basirun. (2022). Perbandingan metode ANN backpropagation dan ARMA untuk peramalan inflasi di Indonesia. Jambura Journal of Probability and Statistics, 3(2), 61–70. https://doi.org/https://doi.org/10.34312/jjps.v1i1.15440

Aruan, N. M., Panggabean, D. A. H., & Sihombing, F. M. (2021). Prediksi tinggi curah hujan dan kecepatan angin berdasarkan data cuaca dengan penerapan algoritma Artificial Neural Network (ANN). SEMINASTIKA, 3(1), 1–7. https://doi.org/10.47002/seminastika.v3i1.237

Bączkiewicz, A., Wątróbski, J., Sałabun, W., & Kołodziejczyk, J. (2021). An ANN model trained on regional data in the prediction of particular weather conditions. Applied Sciences (Switzerland), 11(11), 4757. https://doi.org/10.3390/app11114757

Chandra, R., Chaudhary, K., & Kumar, A. (2022). Comparison of data normalization for wine classification using K-NN algorithm. IJIIS: International Journal of Informatics and Information Systems, 5(4), 175–180. https://doi.org/10.47738/ijiis.v5i4.145

Geurts, M., Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control Holden-Day series in time series analysis and digital processing. In Holden Day. https://doi.org/10.2307/3150485

Guobadia, E. K., & Uadiale, K. K. (2024). Effect of Box-Cox transformation on a k-th weighted moving average processes for time series. African Multidisciplinary Journal of Sciences and Artificial Intelligence, 1(1), 655–668. https://doi.org/https://doi.org/10.58578/AMJSAI.v1i1.3755

Hilal, Y. N., Nainggolan, G. D. A., Syahputri, S. H., & Kartiasih, F. (2024). Comparison of ARIMA and LSTM methods in predicting Jakarta sea level. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 16(2), 163–178. https://doi.org/10.29244/jitkt.v16i2.52818

Ihsan, H., Irwan, I., & Nensi, A. I. E. (2024). Implementation of backpropagation and hybrid ARIMA-NN methods in predicting accuracy levels of rainfall in Makassar city. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 18(4), 2435–2448. https://doi.org/10.30598/barekengvol18iss4pp2435-2448

Kania, D. D. (2022). Sektor penerbangan global dalam isu perubahan iklim : Dampak dan mitigasinya. Jurnal Manajemen Transportasi & Logistik (JMTRANSLOG), 8(2), 133. https://doi.org/10.54324/j.mtl.v8i2.713

Katabba, Y. I., & Estefani, K. (2023). Penerapan model Self-Exciting Threshold Autoregressive (SETAR) nonlinear dalam memodelkan data harga minyak sawit (FCPOc1). Mathematical Sciences and Applications Journal, 4(1), 33–39. https://doi.org/10.22437/msa.v4i1.28292

Laily, V. O. N., Suhartono, Pusporani, E., & Atok, R. M. (2021). A novel hybrid MGSTAR-RNN model for forecasting spatio-temporal data. Journal of Physics: Conference Series, 1752(1), 012011. https://doi.org/10.1088/1742-6596/1752/1/012011

Leontinus, G. (2022). Program dalam pelaksanaan tujuan pembangunan berkelanjutan (SDGs) dalam hal masalah perubahan iklim di Indonesia. Jurnal Samudra Geografi, 5(1), 43–52. https://doi.org/10.33059/jsg.v5i1.4652

Maulana, C., & Hajarisman, N. (2023). Penerapan transformasi Box Cox untuk mengatasi masalah ketidakstasioneran dan pola periodik dalam data deret waktu pada ekspor bidang pertanian di Indonesia. Bandung Conference Series: Statistics, 3(2), 763–772. https://doi.org/10.29313/bcss.v3i2.9371

Montgomery, D. C., Jennings, C. L., & Murat, K. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons.

Muslihin, K. R. A., & Ruchjana, B. N. (2023). Model Autoregressive Moving Average (ARMA) untuk peramalan tingkat inflasi di Indonesia. Limits: Journal of Mathematics and Its Applications, 20(2), 209. https://doi.org/10.12962/limits.v20i2.15098

Nanlohy, Y. W. A., & Loklomin, S. B. (2023). Model Autoregressive Integrated Moving Average (ARIMA) untuk meramalkan inflasi Indonesia. VARIANCE: Journal of Statistics and Its Applications, 5(2), 201–208. https://doi.org/10.30598/variancevol5iss2page201-208

NOAA. (2024). Climate data records. National Oceanic and Atmospheric Administration. https://www.ncei.noaa.gov/cdo-web/

Novita, R., & Putri, A. (2021). Analisis algoritma backpropagation Neural Network dalam permalan jumlah benih ikan. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 7(2), 201–207.

Palupi, S. P., Sadik, K., & Afendi, F. M. (2023). Perbandingan performa metode hybrid ARIMA-SVM dan ARIMA-NNAR pada peramalan data deret waktu [IPB University]. http://repository.ipb.ac.id/handle/123456789/123662

Pangaribuan, J. J., Fanny, F., Barus, O. P., & Romindo, R. (2023). Prediksi penjualan bisnis rumah properti dengan menggunakan metode Autoregressive Integrated Moving Average (ARIMA). Jurnal Sistem Informasi Bisnis, 13(2), 154–161. https://doi.org/10.21456/vol13iss2pp154-161

Pradana, D. A. P., Mahananto, F., & Djunaidy, A. (2022). Sistem peramalan menggunakan Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) untuk harga minyak sawit Indonesia. Jurnal Teknik ITS, 11(2). https://doi.org/10.12962/j23373539.v11i2.86373

Razzaaq, M., Lubis, L. H., & Sirait, R. (2024). Studi pengaruh suhu dan tekanan udara terhadap gaya angkat pesawat tahun 2014-2021 di Bandara Internasional Kualanamu Deli Serdang. Relativitas: Jurnal Riset Inovasi Pembelajaran Fisika, 7(2), 102–111. https://doi.org/10.29103/relativitas.v7i2.18923

Sakti, A. I., Saputra, L., Suhendra, H., Halim, N., Alviari, I., Ilham, M. R. N., Putri, M. H. N., & Dalimunthe, D. Y. (2024). Implementasi Artificial Neural Network (ANN) dalam memprediksi nilai tukar Rupiah terhadap Dolar Amerika. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 12(2), 124–130. https://doi.org/10.37905/euler.v12i2.26654

Saputra, R., Sunardiyo, S., Nugroho, A., & SUbiyanto. (2023). Analisis arsitektur Jaringan Syaraf Tiruan-Multilayer Perceptron untuk efektivitas estimasi beban energi listrik PT. PLN (Persero) UP3 Salatiga. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 11(3), 664. https://doi.org/10.26760/elkomika.v11i3.664

Schmidgall, S., Ziaei, R., Achterberg, J., Kirsch, L., Hajiseyedrazi, S. P., & Eshraghian, J. (2024). Brain-inspired learning in artificial neural networks: A review. APL Machine Learning, 2(2), 1–13. https://doi.org/10.1063/5.0186054

Ulandari, R. (2023). Perbandingan metode Autoregressive Integrated Moving Average dengan metode hybrid Autoregressive Integrated Moving Average Jaringan Saraf Tiruan pada peramalan harga emas. Universitas Hasanuddin.

Wicaksono, A. (2024). Anomali suhu udara bulan Oktober 2024. Badan Meteorologi, Klimatologi, Dan Geofisika. https://www.bmkg.go.id/iklim/anomali-suhu-udara/anomali-suhu-udara-bulan-oktober-2024

Published

2025-09-19

How to Cite

Elly Pusporani, Fitriana Nur Afifa, & Fidela Sahda Ilona Ramadhina. (2025). Temperature Forecast at Djuanda International Airport using ARIMA, ANN, and Hybrid ARIMA-ANN. ComTech: Computer, Mathematics and Engineering Applications, 16(2). Retrieved from https://journal.binus.ac.id/index.php/comtech/article/view/13219
Abstract 0  .