Turning DIN 19682-7 Procedure of Infiltration Rate of Soils Test into the Mobile App for Cloud Storage

Authors

  • Totok Sulistyo Politeknik Negeri Balikpapan
  • Mariatul Kiptiah Civil Engineering, Balikpapan State Polytechnic
  • Sari Bahagiarti Kusumayudha Geological Engineering Department of Universitas Pembangunan Nasional Veteran Yogyakarta
  • Tedy Agung Cahyadi Mining Engineering Department of Universitas Pembangunan Nasional Veteran Yogyakarta
  • Reza Adhi Fajar Civil Engineering and Earth Science Department of Banjarmasin State Polytechnic

Keywords:

soil infiltration, mobile web application, Horton soil infiltration, DIN 19682-7, crowdsourching, cloud computing

Abstract

The in-situ soil infiltration test using a double ring infiltrometer (DRI) apparatus can be conducted in the field according to DIN 19682-7 standards and procedures. As required by these standards, the traditional paper-based measurement form can be replaced with a new application developed to meet standard requirements. The DRI apparatus consists of two concentric rings placed in the soil, filled with water, while the outer ring maintains a constant water level. The water level drop in the inner ring is observed and recorded at regular intervals. The infiltration rate can be calculated for each interval by measuring the change in water height over time. This new application facilitates the automatic calculation of both the actual soil infiltration rate and the Horton soil infiltration model. Comparison tests between the application results and Excel calculations have yielded similar outcomes. The goal of this research is to develop a mobile web-based application for recording data and calculating soil infiltration measurements using the DRI method. The research methodology involves transforming the measurement procedure into a concept, designing the application, and then implementing that design. By replacing the paper-based process, this application will enhance the efficiency, accuracy, and flexibility of soil infiltration measurement projects in various locations. Furthermore, the data will be stored in the cloud, allowing for crowdsourced infiltration data collection and monitoring from any location, including the office.

Dimensions

References

Abdelmoneim, A. A., Daccache, A., Khadra, R., Bhanot, M., & Dragonetti, G. (2021). Internet of Things (IoT) for double ring infiltrometer automation. Computers and Electronics in Agriculture, 188, 106324. https://doi.org/10.1016/J.COMPAG.2021.106324

Arienzo, M. M., Collins, M., & Jennings, K. S. (2021). Enhancing Engagement of Citizen Scientists to Monitor Precipitation Phase. Frontiers in Earth Science, 9, 617594. https://doi.org/10.3389/feart.2021.617594

Bandi, A., Adapa, P. V. S. R., & Kuchi, Y. E. V. P. K. (2023). The power of generative ai: A review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet, 15(8), 260. https://doi.org/10.3390/FI15080260

Cao, J., Lam, K. Y., Lee, L. H., Liu, X., Hui, P., & Su, X. (2023). Mobile Augmented Reality: User Interfaces, Frameworks, and Intelligence. ACM Computing Surveys, 55(9), 189.

Cleophas, F., Isidore, F., Musta, B., Mohd Ali, B. N., Mahali, M., Zahari, N. Z., & Bidin, K. (2022). Effect of soil physical properties on soil infiltration rates. Journal of Physics: Conference Series, 2314(1), 012020. https://doi.org/10.1088/1742-6596/2314/1/012020

DIN Media. (2015). DIN 19682-7 - 2015-08. https://www.dinmedia.de/en/standard/din-19682-7/236310867

Ding, W., Lin, X., & Zarro, M. (2025). Information Architecture and UX Design. Springer International Publishing AG. https://doi.org/10.1007/978-3-031-72138-0

Enríquez, J. G., Sánchez-Begines, J. M., Domínguez-Mayo, F. J., García-García, J. A., & Escalona, M. J. (2019). An approach to characterize and evaluate the quality of Product Lifecycle Management Software Systems. Computer Standards & Interfaces, 61, 77–88. https://doi.org/10.1016/J.CSI.2018.05.003

Fraisl, D., Hager, G., Bedessem, B., Gold, M., Hsing, P. Y., Danielsen, F., Hitchcock, C. B., Hulbert, J. M., Piera, J., Spiers, H., Thiel, M., & Haklay, M. (2022). Citizen science in environmental and ecological sciences. Nature Reviews Methods Primers 2022, 2(1), 1–20. https://doi.org/10.1038/s43586-022-00144-4

Gorthi, S., Singh, R., Chakraborty, S., Li, B., & Weindorf, D. C. (2022). Identification of Köppen climate classification and major land resource area in the United States using a smartphone application. Geoderma Regional, 30, 567. https://doi.org/10.1016/j.geodrs.2022.e00567

Whenua, M. (2019). Cloud-connected, smartphone-driven infiltrometer network. https://www.landcareresearch.co.nz/publications/soil-horizons/soil-horizons-articles/infiltrometer-network

Kouadio, J. S., Rodriguez, F., Grandvaux, E., & Waksberg, A. (2024). Pathway to design a multiparameter application for environmental monitoring to contribute to citizen well-being. Nature-Based Solutions, 5, 100117. https://doi.org/10.1016/J.NBSJ.2024.100117

Lala, S. K., Kumar, A., & Subbulakshmi, T. (2021). Secure web development using OWASP guidelines. Proceedings - 5th International Conference on Intelligent Computing and Control Systems, ICICCS 2021, 323–332. https://doi.org/10.1109/ICICCS51141.2021.9432179

Latorre, B., Moret-Fernández, D., Lyons, M. N., & Palacio, S. (2021). Smartphone-based tension disc infiltrometer for soil hydraulic characterisation. Journal of Hydrology, 600, 126551. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126551

Lupián-Machuca, M. R., Cruz-Cárdenas, G., Flores-Magallón, R., Silva-García, J. T., Ochoa-Estrada, S., & Martínez-Trinidad, S. (2024). Prediction of Water Infiltration of Three Types of Soil with Machine Learning in the Sahuayo River Basin. Applied and Environmental Soil Science, 2024(1), 5555105. https://doi.org/10.1155/2024/5555105

Maynard, J. J., Maniak, S., Hamrick, L., Peacock, G., McCord, S. E., & Herrick, J. E. (2022). LandPKS Toolbox: Open-source mobile app tools for sustainable land management. Journal of Soil and Water Conservation, 77(6), 91A-97A.

Maynard, J. J., Yeboah, E., Owusu, S., Buenemann, M., Neff, J. C., & Herrick, J. E. (2023). Accuracy of regional-to-global soil maps for on-farm decision-making: Are soil maps "good enough''? SOIL, 9(1), 277–300. https://doi.org/10.5194/soil-9-277-2023

Nebe, K., & Heimgärtner, R. (2024). Ergonomic Principles in Designing Assistive Systems. In International Conference on Human-Computer Interaction (pp. 75-87). https://doi.org/10.1007/978-3-031-60875-9_6

Negreiros, B., Schwindt, S., Scolari, F., Barros, R., Galdos, A. A., Noack, M., Haun, S., & Wieprecht, S. (2023). A database application framework toward data-driven vertical connectivity analysis of rivers. Environmental Modelling & Software, 172, 105916. https://doi.org/10.1016/j.envsoft.2023.105916

Peng, S. (2024). The influence of Graphical User Interfaces on human-computer interaction and the impact of organizing software on decision-making process. Applied and Computational Engineering, 50(1), 213–221. https://doi.org/10.54254/2755-2721/50/20241509

Pudifoot, B., Cárdenas, M. L., Buytaert, W., Paul, J. D., Narraway, C. L., & Loiselle, S. (2021). When it rains, it pours: Integrating citizen science methods to understand resilience of urban green spaces. Frontiers in Water, 3, 654493. https://doi.org/10.3389/FRWA.2021.654493/BIBTEX

Rao, A. S., Radanovic, M., Liu, Y., Hu, S., Fang, Y., Khoshelham, K., Palaniswami, M., & Ngo, T. (2022). Real-time monitoring of construction sites: Sensors, methods, and applications. Automation in Construction, 136, 104099. https://doi.org/10.1016/J.AUTCON.2021.104099

Rao, H., Wang, J., Zhao, Z., Wu, G., & Feng, T. (2021). An analysis of rainfall infiltration of expansive soil slope based on the finite element software custom constitutive model. Hydrogeology and Engineering Geology, 48(1), 154–162. https://doi.org/10.16030/j.cnki.issn.1000-3665.202002020

Sergeeva, J., Filatova, A., Kovalchuk, M., & Teryoshkin, S. (2022). SemAGR: semantic method for accurate geolocations reconstruction within extensive urban sites. Procedia Computer Science, 212, 409–417. https://doi.org/10.1016/J.PROCS.2022.11.025

Sulistyo, T., Achmad, K., & Purnama, I. B. I. (2022). The asset management and tracking system for Technical and Vocational Education and Training (TVET) institution based on ubiquitous computing. ComTech: Computer, Mathematics and Engineering Applications, 13(1), 23–34. https://doi.org/10.21512/COMTECH.V13I1.7342

Sulistyo, T., Achmad, K., & Respati, S. (2020). GeomatikaDroid: An Android application for improving theodolite measurement. Journal of Physics: Conference Series, 1450(1). https://doi.org/10.1088/1742-6596/1450/1/012021

Sulistyo, T., & Fauzi, R. (2023). Soil infiltration rate prediction using machine learning regression model: A case study on Sepinggan River Basin, Balikpapan, Indonesia. Indonesian Journal on Geoscience, 10(3), 335–347. https://doi.org/10.17014/IJOG.10.3.335-347

Sulistyo, T., Kusumayudha, S. B., Cahyadi, T. A., & Fajar, R. A. (2025). Mobile and web-based application as a tool for flood data collection based on citizen science. Earth Science Informatics 2024, 18(2), 1–14. https://doi.org/10.1007/S12145-024-01664-1

Sun, C., Tang, C. S., Vahedifard, F., Cheng, Q., Dong, A., Gao, T. F., & Shi, B. (2024). High-resolution monitoring of soil infiltration using distributed fiber optic. Journal of Hydrology, 640, 131691. https://doi.org/10.1016/J.JHYDROL.2024.131691

Thriemer, K., Ley, B., Ame, S. M., Puri, M. K., Hashim, R., Chang, N. Y., Salim, L. A., Ochiai, R. L., Wierzba, T. F., Clemens, J. D., Von Seidlein, L., Deen, J. L., Ali, S. M., & Ali, M. (2012). Replacing paper data collection forms with electronic data entry in the field: Findings from a study of community-acquired bloodstream infections in Pemba, Zanzibar. BMC Research Notes, 5(1), 1–7. https://doi.org/10.1186/1756-0500-5-113/TABLES/2

Uradziński, M., & Bakuła, M. (2020). Assessment of static positioning accuracy using low-cost smartphone GPS devices for geodetic survey points’ determination and monitoring. Applied Sciences, 10(15), 5308. https://doi.org/10.3390/APP10155308

Vandervaere, J.-P., Vauclin, M., & Elrick, D. E. (2000). Transient flow from tension Infiltrometers I. The two-parameter equation. Soil Science Society of America Journal, 64(4), 1263–1272. https://doi.org/10.2136/SSSAJ2000.6441263X

Viessman, W., & Lewis, G. L. (2011). Introduction to hydrology. Pearson Education.

Vishwakarma, D. K., Yadav, D., Kumar, R., Kumar, R., Bhat, S. A., Mirzania, E., & Kuriqi, A. (2024). Assessing the performance of various infiltration models to improve water management practices. Paddy and Water Environment, 1–17.

Published

2025-08-14

How to Cite

Sulistyo, T., Kiptiah, M., Kusumayudha, S. B., Cahyadi, T. A., & Fajar, R. A. (2025). Turning DIN 19682-7 Procedure of Infiltration Rate of Soils Test into the Mobile App for Cloud Storage. ComTech: Computer, Mathematics and Engineering Applications, 16(2). Retrieved from https://journal.binus.ac.id/index.php/comtech/article/view/13000
Abstract 32  .