Designing School Building Maintenance Priorities Using the Cost-User Effectiveness Ratio

Authors

  • Visaretri Pramuktia Purwosri Universitas Muhammadiyah Surakarta
  • Hari Prasetyo Universitas Muhammadiyah Surakarta
  • Mochamad Solikin Universitas Muhammadiyah Surakarta
  • Senja Rum Harnaeni Universitas Muhammadiyah Surakarta
  • Sri Sunarjono Universitas Muhammadiyah Surakarta

DOI:

https://doi.org/10.21512/comtech.v16i1.12385

Keywords:

school building maintenance, Cost-User Effectiveness Ratio (CUER), analytical hierarchy process, prioritization, decision-making

Abstract

Prioritizing school building maintenance solely based on structural damage often leads to inefficient budget allocation and fewer beneficiaries. The research introduced an integrated Cost-User Effectiveness Ratio (CUER) to establish maintenance priorities by combining three critical factors: damage severity, maintenance costs, and the number of affected students. The CUER formulation employed the Geometric Mean or the root mean multiplication of the cost effectiveness and user effectiveness ratio to balance these factors systematically. The methodology encompassed several steps, including damage assessment and calculation of component importance weights using the Analytical Hierarchy Process (AHP), to determine integrated damage levels, costs, and student weights. These inputs were subsequently used to generate priority rankings of schools requiring maintenance. As a result, the case study in Wonogiri Regency illustrates the superiority of the proposed method over the conventional method. While the conventional approach prioritizes 27 schools benefiting 2,442 students, the CUER approach prioritizes 33 schools benefiting 2,957 students, demonstrating increased efficiency and broader impact. The CUER-based model presents a systematic and equitable solution to prioritize school building maintenance, ensuring the optimal allocation of resources and maximizing benefits within existing budgetary constraints. This innovative approach addresses current challenges in maintenance planning and offers significant implications for improving the management of educational infrastructure.

Dimensions

Plum Analytics

Author Biographies

Visaretri Pramuktia Purwosri, Universitas Muhammadiyah Surakarta

Master of Civil Engineering, Faculty of Engineering

Hari Prasetyo, Universitas Muhammadiyah Surakarta

Industrial Engineering Program, Faculty of Engineering

Mochamad Solikin, Universitas Muhammadiyah Surakarta

Master of Civil Engineering, Faculty of Engineering

Senja Rum Harnaeni, Universitas Muhammadiyah Surakarta

Master of Civil Engineering, Faculty of Engineering

Sri Sunarjono, Universitas Muhammadiyah Surakarta

Master of Civil Engineering, Faculty of Engineering

References

Alharasees, O., Kale, U., Rohacs, J., Rohacs, D., Eva, M. E., & Boros, A. (2024). Green building energy: Patents analysis and analytical hierarchy process evaluation. Heliyon, 10(8), 1–22. https://doi.org/10.1016/j.heliyon.2024.e29442

Almohassen, A. S., Alfozan, M., Alshamrani, O. S., & Shaawat, M. E. (2023). Evaluating construction contractors in the pre-tendering stage through an integrated based model. Alexandria Engineering Journal, 82, 437–445. https://doi.org/10.1016/j.aej.2023.09.069

Al-Rahbi, A. K. H., Abushammala, M. F., & Qazi, W. A. (2020). Application of the analytic hierarchy process for management of soil erosion in Oman. International Journal of the Analytic Hierarchy Process, 12(1), 104 – 116. https://doi.org/10.13033/ijahp.v12i1.683

Andal, E. R., & Juanzon, J. B. P. (2020). Identifying risks in implementing sustainable building materials in condominium fit-out projects using analytic hierarchy process. Civil Engineering and Architecture, 8(6), 1266–1276. https://doi.org/10.13189/cea.2020.080610

Aykut, T. (2021). Determination of groundwater potential zones using Geographical Information Systems (GIS) and Analytic Hierarchy Process (AHP) between Edirne-Kalkansogut (Northwestern Turkey). Groundwater for Sustainable Development, 12. https://doi.org/10.1016/j.gsd.2021.100545

Badan Pusat Statistik. (2023). Statistik pendidikan 2023. https://www.bps.go.id/id/publication/2023/11/24/54557f7c1bd32f187f3cdab5/statistik-pendidikan-2023.html

Chundi, V., Raju, S., Waim, A. R., & Swain, S. S. (2022). Priority ranking of road pavements for maintenance using analytical hierarchy process and VIKOR method. Innovative Infrastructure Solutions, 7. https://doi.org/10.1007/s41062-021-00633-7

El Hadidi, O., El‐Dash, K., Besiouny, M., & Meshref, A. (2022). Evaluation of a building Life Cycle Cost (LCC) criteria in Egypt using the Analytic Hierarchy Process (AHP). International Journal of the Analytic Hierarchy Process, 14(2), 1–26. https://doi.org/10.13033/ijahp.v14i2.958

Fernandez, R., Calvo, A., Correal, J. F., D’Ayala, D., & Medaglia, A. L. (2024). Large-scale school building infrastructure improvement: The case of the city of Cali, Colombia. Socio-Economic Planning Sciences, 93, 1–13. https://doi.org/10.1016/j.seps.2024.101881

Gashaw, R., Belay, S., Gizat, A., Hailu, S., Rookoei, S., & Matos, J. (2023). Development of an integrative green building rating system for the Ethiopian public building projects using analytic hierarchy process. Cogent Engineering, 10(2), 1–22. https://doi.org/10.1080/23311916.2023.2283324

Hansen, S., Siregar, P. H., & Jevica. (2020). Analytic hierarchy process-based decision-making framework for formwork system selection by contractors. Journal of Construction in Developing Countries, 25(2), 237–255. https://doi.org/10.21315/JCDC2020.25.2.10

Ibrahim, A. H., & Shaker, M. A. (2019). Sustainability index for highway construction projects. Alexandria Engineering Journal, 58(4), 1399–1411. https://doi.org/10.1016/j.aej.2019.11.011

Ismanto, Harimurti, & Zaika, Y. (2017). Penentuan prioritas kegiatan perawatan bangunan gedung sekolah negeri di Kota Blitar. Rekayasa Sipil, 11(3), 236–244. https://doi.org/10.21776/ub.rekayasasipil/2017.011.03.9

Jayakody, J. A. N. N., Nasvi, M. C. M., Robert, D. J., Navaratnarajah, S. K., Kurukulasuriya, L. C., Giustozzi, F., Gunasekara, C., & Setunge, S. (2024). Development of a cross-asset model for the maintenance of road and water pipe assets using AHP method. Civil Engineering Journal, 10(2), 336–361. http://dx.doi.org/10.28991/CEJ-2024-010-02-01

Le, A. T. H., Domingo, N., Rasheed, E., & Park, K. (2021). Maturity model of building maintenance management for New Zealand’s state schools. Building Research & Information, 50(4), 438–451. https://doi.org/10.1080/09613218.2021.1961573

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. (2022). Peraturan Menteri Pendidikan, Kebudayaan, Riset dan Teknologi Nomor 3 Tahun 2022 tentang Petunjuk Operasional Dana Alokasi Khusus (DAK) Fisik. JDIH BPK. https://peraturan.bpk.go.id/Details/224162/permendikbudriset-no-3-tahun-2022

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. (2023). Buku panduan - Tata cara identifikasi dan verifikasi kerusakan - Cara mengisi form kerusakan untuk sekolah dan madrasah. Dapodik. https://www.dapodik.co.id/2023/04/buku-panduan-tata-cara-identifikasi-dan.html

Menteri Pekerjaan Umum dan Perumahan Rakyat. (2008). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor 24 Tahun 2008 tentang Pedoman Pemeliharaan dan Perawatan Bangunan Gedung. JDIH BPK. https://peraturan.bpk.go.id/Details/104476/permen-pupr-no-24prtm2008-tahun-2008

Mushtaha, E., Shamsuzzaman, M., Abdouli, S. A., Hamdan, S., & Soares, T. G. (2020). Application of the analytic hierarchy process to developing sustainability criteria and assessing heritage and modern buildings in the UAE. Architectural Engineering and Design Management, 16(5), 329–355. https://doi.org/10.1080/17452007.2019.1693335

Nautiyal, A., & Sharma, S. (2022). Scientific approach using AHP to prioritize low volume rural roads for pavement maintenance. Journal of Quality in Maintenance Engineering, 28(2), 411–429. https://doi.org/10.1108/JQME-12-2019-0111

Razi, P. Z., Ali, M. I., & Ramli, N. I. (2019). AHP-based analysis of the risk assessment delay case study of public road construction project: An empirical study. Journal of Engineering Science and Technology, 14(2), 875–891.

Yang, Y., Yu, B., Tai, H., Shen, L., Liu, F., & Wang S. (2022). A methodology for weighting indicators of value assessment of historic building using AHP with experts’ priorities. Journal of Asian Architecture and Building Engineering, 21(5), 1814–1829. https://doi.org/10.1080/13467581.2021.1971529

Wang, Y., Liu, Y., Hong, Q., & He, Q. (2023). Research on low-carbon evaluation of clean energy use in rural residential buildings based on analytic hierarchy process method. Engineering Reports, 6(2), 1–11. https://doi.org/10.1002/eng2.12715

Warnars, H. L. H. S., Kusnadi, E., & Warnars, L. L. H. S. (2021). Prediction of road infrastructure priorities in Banten province using analytical hierarchy process method. International Journal of Engineering Research in Africa, 53, 112–122. https://doi.org/10.4028/www.scientific.net/JERA.53.112

Downloads

Published

2025-06-03

How to Cite

Purwosri, V. P., Prasetyo, H., Solikin, M., Harnaeni, S. R., & Sunarjono, S. (2025). Designing School Building Maintenance Priorities Using the Cost-User Effectiveness Ratio. ComTech: Computer, Mathematics and Engineering Applications, 16(1), 67–79. https://doi.org/10.21512/comtech.v16i1.12385
Abstract 72  .
PDF downloaded 3  .