Optimizing Quality Attributes of Piper Retrofratum Vahl. Through Partial Least Squares Regression: Insights from Pretreatment and Drying Experiments with Fruit Peel Infusions

Authors

  • Ida Lumintu University of Trunojoyo Madura

DOI:

https://doi.org/10.21512/comtech.v16i1.12246

Keywords:

Piper retrofratum Vahl., predictive modeling in food science, Partial Least Squares Regression (PLSR), quality optimization in spice drying, sustainable food processing techniques

Abstract

The research aimed to optimize the quality attributes of Piper retrofractum Vahl.—piperine content, color brightness, and water content—using Partial Least Squares Regression (PLSR) to evaluate the pretreatment effects with fruit peel infusions and drying conditions. The research urgency lied in addressing the challenges of achieving consistent product quality while promoting sustainable food processing practices. Around 30 samples of Piper retrofractum Vahl. were subjected to varying pretreatment concentrations, soaking durations, drying durations, and peel types (orange and pineapple). The PLSR model was employed to identify key factors influencing the quality attributes and assess predictive performance based on Root Mean Squared Error (RMSE) and Coefficient of Determination (R²) values. As a result, the PLSR model explains 43.22% of the variance in piperine content, highlighting the importance of shorter soaking durations and higher pretreatment concentrations in preserving piperine levels. For water content, the model captures 75.08% of the variance, emphasizing the critical role of drying duration in reducing moisture. However, the color brightness model explains only 18.5% of the variance, indicating the need to explore contributing factors further. The research introduces the innovative use of fruit peel-infused water as a sustainable pretreatment method, contributing to eco-friendly food processing practices and offering practical insights into optimizing production for improved product quality. The findings underscore the importance of balancing pretreatment and drying parameters to address inconsistencies in quality while promoting sustainability. Future research should expand experimental conditions, integrate additional variables, and explore advanced modeling techniques to enhance predictive accuracy and product quality.

Dimensions

Plum Analytics

Author Biography

Ida Lumintu, University of Trunojoyo Madura

Department of Industrial Engineering, Faculty of Engineering

References

Amaliyah, S., Pangesti, D. P., Masruri, Sabarudin, A., & Sumitro, S. B. (2020). Green synthesis and characterization of copper nanoparticles using Piper Retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 6(8), 1–12. https://doi.org/10.1016/j.heliyon.2020.e04636

Amaliyah, S., Sabarudin, A., Masruri, M., & Sumitro, S. B. (2022). Characterization and antibacterial application of biosynthesized silver nanoparticles using Piper Retrofractum Vahl fruit extract as bioreductor. Journal of Applied Pharmaceutical Science, 12(3), 103–114. https://doi.org/10.7324/japs.2022.120311

Andrade, C. B., Moura-Bueno, J. M., Comin, J. J., & Brunetto, G. (2023). Grape yield prediction models: Approaching different machine learning algorithms. Horticulturae, 9(12), 1–18. https://doi.org/10.3390/horticulturae9121294

Aymen, S., Nawaz, H., Majeed, M. I., Rashid, N., Ehsan, U., Shahzad, R., ... & Ali, Z. (2023). Raman spectroscopy for the quantitative analysis of Lornoxicam in solid dosage forms. Journal of Raman Spectroscopy, 54(3), 250–257. https://doi.org/10.1002/jrs.6476

Christianty, F. M., Dewi, A. S., Khasanah, F., Holidah, D., Dewi, I. P., & Fajrin, F. A. (2024). Drug-Piperaceae herb interaction potency through analgesic, anxiolytic, and antiinflammatory activity studies. Tropical Journal of Natural Product Research, 8(4), 6781–6786. https://doi.org/10.26538/tjnpr/v8i4.6

Dermawan, I. G. N. P., Sari, N. N. G., & Ardana, D. Y. (2022). The role of Java cabe (Piper Retrofractum vahl.) on traumatic ulcer treatment: Peran cabe Jawa (Piper Retrofractum Vahl.) Dalam menanggulangi ulkus traumatikus. Interdental Jurnal Kedokteran Gigi (IJKG), 18(2), 74–80.

Ekowati, H., Achmad, A., Prasasti, E., Wasito, H., Sri, K., Hidayati, Z., & Ekasari, T. (2012). zingiber officinale, piper retrofractum and combination induced apoptosis and p53 expression in Myeloma and WiDr cell lines. HAYATI Journal of Biosciences, 19(3), 137–140. https://doi.org/10.4308/hjb.19.3.137

Gorgani, L., Mohammadi, M., Najafpour, G. D., & Nikzad, M. (2017). Piperine—The bioactive compound of black pepper: From isolation to medicinal formulations. Comprehensive Reviews in Food Science and Food Safety, 16(1), 124–140. https://doi.org/10.1111/1541-4337.12246

Greenberg, I., Sawallisch, A., Stelling, J., Vohland, M., & Ludwig, B. (2023). Optimization of sample preparation and data evaluation techniques for X-ray fluorescence prediction of soil texture, pH, and cation exchange capacity of loess soils. Soil Science Society of America Journal, 88(1), 27–42. https://doi.org/10.1002/saj2.20598

Ishii, M., Miyata, H., Ikeda, N., Tagawa, T., & Nishimura, M. (2022). Piper retrofractum extract and its component piperine promote lymphangiogenesis via an AKT ‐ and ERK ‐dependent mechanism. Journal of Food Biochemistry, 46(9), 1–13. https://doi.org/10.1111/jfbc.14233

Jin, J., Wu, M., Song, G., & Wang, Q. (2022). Genetic algorithm captured the informative bands for partial least squares regression better on retrieving leaf nitrogen from hyperspectral reflectance. Remote Sensing, 14(20), 1–18. https://doi.org/10.3390/rs14205204

Khudzaifi, M., Retno, S. S., & Rohman, A. (2020). The employment of FTIR spectroscopy and chemometrics for authentication of essential oil of Curcuma mangga from candle nut oil. Food Research, 4(2), 515–521. https://doi.org/10.26656/fr.2017.4(2).313

Kubo, M., Ishii, R., Ishino, Y., Harada, K., Matsui, N., Akagi, M., ... & Fukuyama, Y. (2013). Evaluation of constituents of Piper Retrofractum fruits on neurotrophic activity. Journal of Natural Products, 76(4), 769–773. https://doi.org/10.1021/np300911b

Li, Y. Y., Liu, Y., Ranagalage, M., Zhang, H., & Zhou, R. (2020). Examining land use/land cover change and the summertime surface urban heat island effect in fast-growing Greater Hefei, China: Implications for sustainable land development. ISPRS International Journal of Geo-Information, 9(10), 1–18. https://doi.org/10.3390/ijgi9100568

Liu, W., Zhang, B., Xin, Z., Ren, D., & Yi, L. (2017). GC-MS fingerprinting combined with chemometric methods reveals key bioactive components in Acori Tatarinowii Rhizoma. International Journal of Molecular Sciences, 18(7), 1–11. https://doi.org/10.3390/ijms18071342

Mao, Q., Wu, Z., Deng, Y., Sun, J., Bai, H., Gong, L., & Jiang, Z. (2023). Assessing the “scale of effect”: The impact of multi-scale landscape characteristics on urban bird species taxonomic and functional diversity. Diversity, 15(8), 1–19. https://doi.org/10.3390/d15080943

Meechuen, M., Pimsawang, L., Chaisan, T., Samipak, S., Pluempanupat, W., & Juntawong, P. (2023). Comparative transcriptome analysis reveals genes associated with alkaloid diversity in Javanese long pepper (Piper Retrofractum) fruits. International Journal of Plant Biology, 14(4), 896–909. https://doi.org/10.3390/ijpb14040066

Munnaf, M. A., & Mouazen, A. M. (2022). Removal of external influences from on-line vis-NIR spectra for predicting soil organic carbon using machine learning. CATENA, 211. https://doi.org/10.1016/j.catena.2022.106015

Nurhidayah, E. S., Hidayati, D., Habiba, R. A., & Maulidya, S. (2024). Molecular docking and ADMET studies to investigate antioxidant potency of new amides of Piper Retrofractum Vahl. By targeting Keap1 inhibitor. In IOP Conference Series Earth and Environmental Science (Vol. 1358). https://doi.org/10.1088/1755-1315/1358/1/012003

Oe, M., Wada, K., Asikin, Y., Arakaki, M., Horiuchi, M., & Takahashi, M. (2023). Effects of processing methods on the aroma constituents of hihatsumodoki (Piper Retrofractum Vahl.). Journal of Food Science, 88(6), 2463–2477. https://doi.org/10.1111/1750-3841.16606

Panphut, W., Budsabun, T., & Sangsuriya, P. (2020). In vitro antimicrobial activity of Piper Retrofractum fruit extracts against microbial pathogens causing infections in human and animals. International Journal of Microbiology, 2020(1), 1–6. https://doi.org/10.1155/2020/5638961

Rimsha, G., Shahbaz, M., Majeed, M. I., Nawaz, H., Rashid, N., Akram, M. W., ... & Imran, M. (2023). Raman spectroscopy for the quantitative analysis of solid dosage forms of the active pharmaceutical ingredient of febuxostat. ACS Omega, 8(44), 41451–41457. https://doi.org/10.1021/acsomega.3c05243

Rohmatulloh, B., Lee, M. N., Alatiffa, R. M., Megatama, R. P., Napitupulu, R. A. C., Hendrawan, Y., & Lutfi, M. (2022). Non-destructive prediction of piperine in Javanese chilli (Piper Retrofractum Vahl.) based on color and texture analysis using artificial neural network. In IOP Conference Series Earth and Environmental Science (Vol. 1083). https://doi.org/10.1088/1755-1315/1083/1/012040

Salehi, F. (2020). Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science, 20(3), 586–602. https://doi.org/10.1080/15538362.2019.1616243

Salter, I. (2018). Seasonal variability in the persistence of dissolved environmental DNA (eDNA) in a marine system: The role of microbial nutrient limitation. PLOS ONE, 13(2), 1–23. https://doi.org/10.1371/journal.pone.0192409

Sim, S. F., Chai, M. X. L., & Kimura, A. L. J. (2018). Prediction of lard in palm olein oil using Simple Linear Regression (SLR), Multiple Linear Regression (MLR), and Partial Least Squares Regression (PLSR) based on Fourier‐transform infrared (FTIR). Journal of Chemistry, 2018(1), 1–8.

Stark, J., Hiersche, K. J., Yu, J. C., Hasselbach, A. N., Abdi, H., & Hayes, S. M. (2023). Partial least squares regression analysis of alzheimer’s disease biomarkers, modifiable health variables, and cognitive change in older adults with mild cognitive impairment. Journal of Alzheimer’s Disease, 93(2), 633–651. https://doi.org/10.3233/jad-221084

Supriyanto, & Mojiono. (2022). Inhibition of main protease enzyme (Mpro) by active compounds in cabya (Piper Retrofractum Vahl.) for covid-19 treatment via in silico experiment. In IOP Conference Series: Earth and Environmental Science (Vol. 1059). https://doi.org/10.1088/1755-1315/1059/1/012047

Takahashi, M., Ohshiro, M., Ohno, S., Yonamine, K., Arakaki, M., & Wada, K. (2018). Effects of solar- and oven-drying on physicochemical and antioxidant characteristics of hihatsumodoki (Piper Retrofractum Vahl) fruit. Journal of Food Processing and Preservation, 42(2). https://doi.org/10.1111/jfpp.13469

Tang, R., Zhang, Y. Q., Hu, D. B., Yang, X. F., Yang, J., San, M. M., ... & Wang, Y. H. (2019). New amides and phenylpropanoid glucosides from the fruits of Piper Retrofractum. Natural Products and Bioprospecting, 9, 231–241. https://doi.org/10.1007/s13659-019-0208-z

Thelwell, M., Bullas, A., Kuhnapfel, A., Hart, J., Ahnert, P., Wheat, J., Loeffler, M., Scholz, M., & Choppin, S. (2020). Allometry between measures of body size and shape in a large population-based cohort. In Proceedings of 3DBODY.TECH 2020 11th International Conference and Exhibition on 3D Body Scanning and Processing Technologies.

Tsalyuk, M., Kelly, M., & Getz, W. M. (2017). Improving the prediction of African savanna vegetation variables using time series of MODIS products. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 77–91. https://doi.org/10.1016/j.isprsjprs.2017.07.012

Vannabhum, M., Ziangchin, N., Thepnorarat, P., & Akarasereenont, P. (2023). Metabolomic analysis of Thai Herbal Analgesic Formula based on ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Heliyon, 9(7), 1–11. https://doi.org/10.1016/j.heliyon.2023.e18296

Wan, Y., Yuan, X., Liu, J., Zhang, D., Zhang, Z., & Sha, M. (2023). Efficient determination of pesticides in rice by QuEChERS and UV spectroscopy in combination with chemometrics. Cereal Chemistry, 100(5), 1106–1113. https://doi.org/10.1002/cche.10692

Weil, M., Sing, A. S. C., Méot, J. M., Boulanger, R., & Bohuon, P. (2017). Impact of blanching, sweating and drying operations on pungency, aroma and color of Piper Borbonense. Food Chemistry, 2019, 274–281. https://doi.org/10.1016/j.foodchem.2016.09.144

Yeo, W. S., & Saptoro, A. (2024). Introduction of LSSVR for the prediction of the yellowness index. International Journal of Computing and Digital Systems, 15(1), 81–90. https://doi.org/10.12785/ijcds/150107

Zhang, Z. Y., Wang, Y. J., Yan, H., Chang, X. W., Zhou, G. S., Zhu, L., ... & Duan, J. A. (2021). Rapid geographical origin identification and quality assessment of Angelicae Sinensis Radix by FT-NIR spectroscopy. Journal of Analytical Methods in Chemistry, 2021(1), 1–12. https://doi.org/10.1155/2021/8875876

Zhou, J., Yungbluth, D., Vong, C. N., Scaboo, A., & Zhou, J. (2019). Estimation of the maturity date of soybean breeding lines using UAV-based multispectral imagery. Remote Sensing, 11(18), 1–17. https://doi.org/10.3390/rs11182075

Downloads

Published

2025-05-14

How to Cite

Lumintu, I. (2025). Optimizing Quality Attributes of Piper Retrofratum Vahl. Through Partial Least Squares Regression: Insights from Pretreatment and Drying Experiments with Fruit Peel Infusions. ComTech: Computer, Mathematics and Engineering Applications, 16(1). https://doi.org/10.21512/comtech.v16i1.12246
Abstract 65  .
PDF downloaded 65  .