Heat Treatment and Its Effect on Tensile Strength of Fused Deposition Modeling 3D-Printed Titanium-Polylactic Acid (PLA)

Authors

  • Mahros Darsin University of Jember
  • Rizqa Putri Susanti University of Jember
  • Sumarji University of Jember
  • Mochamad Edoward Ramadhan University of Jember
  • Robertus Sidartawan University of Jember
  • Danang Yudistiro University of Jember
  • Hari Arbiantara Basuki University of Jember
  • Robertoes Koekoeh Koentjoro Wibowo University of Jember
  • Dwi Djumhariyanto University of Jember

DOI:

https://doi.org/10.21512/comtech.v15i2.11255

Keywords:

heat treatment, tensile strength, Fused Deposition Modeling (FDM), 3D printed titanium-PLA

Abstract

Titanium is a biocompatible metal commonly applied in biomedical fields such as bone and dental implants. Recently, the produced titanium-Polylactic Acid (PLA) filament for 3D printing Fused Deposition Modeling (FDM) technique is easier to operate and affordable. This filament contains less than 20% PLA, which is also biocompatible but hydrophobic and capable of producing inflammation of the surrounding artificial living tissue. Therefore, a heat treatment is needed to reduce or even eliminate PLA. The research aimed to optimize the mechanical properties and biocompatibility of titanium-PLA filaments through heat treatment, demonstrating significant advancements in 3D printing applications for biocompatible materials. A Thermogravimetric Analysis (TGA) was carried out to find out the right temperature for reducing PLA levels. Specimens were heat treated with four temperatures at 100oC, 160oC, 190oC, and 543oC, and two holding times of 60 and 120 minutes. The mass of the specimens was weighed before and after heat treatment to determine the mass reduction and tested for tensile, micrograph, and fractography observation. The result is a meagre mass reduction. The highest tensile strength of the heat-treated specimen with a heat treatment temperature of 160oC and a holding time of 60 minutes is 18.310 MPa. However, it is still below the strength of the non-heat treated specimen, 19.890 MPa. Specimens with low tensile strength have a microstructure that shows an uneven distribution of titanium particles. Last, fractography shows porosity in the specimens with the lowest tensile strength.

Dimensions

Plum Analytics

Author Biographies

Mahros Darsin, University of Jember

Department of Mechanical Engineering, Faculty of Engineering

Rizqa Putri Susanti, University of Jember

Department of Mechanical Engineering, Faculty of Engineering

Sumarji, University of Jember

Department of Mechanical Engineering, Faculty of Engineering

Mochamad Edoward Ramadhan, University of Jember

Department of Mechanical Engineering, Faculty of Engineering

Robertus Sidartawan, University of Jember

Department of Mechanical Engineering, Faculty of Engineering

Danang Yudistiro, University of Jember

Department of Mechanical Engineering, Faculty of Engineering

Hari Arbiantara Basuki, University of Jember

Department of Mechanical Engineering, Faculty of Engineering

Robertoes Koekoeh Koentjoro Wibowo, University of Jember

Department of Mechanical Engineering, Faculty of Engineering

Dwi Djumhariyanto, University of Jember

Department of Mechanical Engineering, Faculty of Engineering

References

Ambruș, S., Muntean, R., Kazamer, N., & Codrean, C. (2021). Post‐processing technologies of copper–polylactic acid composites obtained by 3D printing fused deposition modeling. Material Design & Processing Communications, 3, 1–6. https://doi.org/10.1002/mdp2.251

Ameen, M. S. (1995). Fractography: Fracture topography as a tool in fracture mechanics and stress analysis. An introduction. Geological Society, London, Special Publications, 92(1), 1–10. https://doi.org/10.1144/GSL.SP.1995.092.01.01

ASTM International. (2022, July 21). ASTM D638-22: Standard test method for tensile properties of plastics. https://www.astm.org/d0638-22.html

Çevik, Ü., & Kam, M. (2020). A review study on mechanical properties of obtained products by FDM method and metal/polymer composite filament production. Journal of Nanomaterials, 2020(1), 1–9. https://doi.org/10.1155/2020/6187149

Darsin, M., Mauludy, R. R., Hardiatama, I., Fachri, B. A., Ramadhan, M. E., & Parningotan, D. (2022). Analysis of the effect 3D printing parameters on tensile strength using copper-PLA filament. Sinergi, 26(1), 99–106. http://doi.org/10.22441/sinergi.2022.1.013

Darsin, M., Rifky, M. K., Asrofi, M., Basuki, H. A., Wibowo, R. K. K., Djumhariyanto, D., & Choiron, M. A. (2024). The effect of 3D printing parameter variations on tensile strength using filament made of PLA-Titanium. In AIP Conference Proceedings (Vol. 3047). AIP Publishing. https://doi.org/10.1063/5.0193746

Darsin, M., Sabariman, W. A., Trifiananto, M., & Fachri, B. A. (2023). Flexural properties of metal 3D printing products using PLA-stainless steel filament. In AIP Conference Proceedings (Vol. 2482). AIP Publishing. https://doi.org/10.1063/5.0110568

Gabbott, P. (Ed.). (2008). Principles and applications of thermal analysis. Blackwell Publishing. https://doi.org/10.1002/9780470697702.fmatter

Grygier, D., Kujawa, M., & Kowalewski, P. (2022). Deposition of biocompatible polymers by 3D printing (FDM) on titanium alloy. Polymers, 14(2), 1–26. https://doi.org/10.3390/polym14020235

Guduru, K. K., & Srinivasu, G. (2020). Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3D printing. Materials Today: Proceedings, 33, 5403–5407. https://doi.org/10.1016/j.matpr.2020.03.128

Husin, J. A., Arifin, M., Liza, R., Ritonga, D. A. A., Sarjana, S., & Yulfitra, Y. (2024). Pelatihan dan pengenalan teknologi additive manufacture 3D printing pada proses pencetakan modeling menggunakan software CAD (Computer Aided Design). Prioritas: Jurnal Pengabdian Kepada Masyarakat, 6(1), 29–35.

Jayanth, N., Jaswanthraj, K., Sandeep, S., Mallaya, N. H., & Siddharth, S. R. (2021). Effect of heat treatment on mechanical properties of 3D printed PLA. Journal of the Mechanical Behavior of Biomedical Materials, 123. https://doi.org/10.1016/j.jmbbm.2021.104764

Kaur, M., & Singh, K. (2019). Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C, 102, 844–862. https://doi.org/10.1016/j.msec.2019.04.064

Kelly, C. N., Evans, N. T., Irvin, C. W., Chapman, S. C., Gall, K., & Safranski, D. L. (2019). The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Materials Science and Engineering: C, 98, 726–736. https://doi.org/10.1016/j.msec.2019.01.024

Khouri, N. G., Bahú, J. O., Blanco-Llamero, C., Severino, P., Concha, V. O. C., & Souto, E. B. (2024). Polylactic Acid (PLA): Properties, synthesis, and biomedical applications – A review of the literature. Journal of Molecular Structure, 1309, 1–16. https://doi.org/10.1016/j.molstruc.2024.138243

Kim, J. H., Kim, M. Y., Knowles, J. C., Choi, S., Kang, H., Park, S. H., ... & Lee, H. H. (2020). Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications. Dental Materials, 36(7), 945–958. https://doi.org/10.1016/j.dental.2020.04.027

Lu, Z., Ayeni, O. I., Yang, X., Park, H. Y., Jung, Y. G., & Zhang, J. (2020). Microstructure and phase analysis of 3D-printed components using bronze metal filament. Journal of Materials Engineering and Performance, 29, 1650–1656. https://doi.org/10.1007/s11665-020-04697-x

Miller, A., Brown, C., & Warner, G. (2019). Guidance on the use of existing ASTM polymer testing standards for ABS parts fabricated using FFF. Smart and Sustainable Manufacturing Systems, 3(1), 122–138. https://doi.org/10.1520/SSMS20190051

Minh, P. S., Huynh, D. S. T., & Son, T. A. (2022). Metal 3D printing by Fused Deposition Modeling (FDM) with metal powder filament materials. In Defect and Diffusion Forum (Vol. 417, pp. 61–65). Trans Tech Publications, Ltd. https://doi.org/10.4028/p-9s0skz

Mogan, J., Sandanamsamy, L., Harun, W. S. W., Ishak, I., Romlay, F. R. M., Kadirgama, K., & Ramasamy, D. (2024). Thermo-mechanical properties of ABS/stainless steel composite using FDM. Materials Today: Proceedings, In Press. https://doi.org/10.1016/j.matpr.2024.01.029

Rahmayetty, Kanani, N., & Wardhono, E. Y. (2018). Pengaruh penambahan PLA pada pati terplastisasi gliserol terhadap sifat mekanik blend film. In Proseding Seminar Nasional Sains dan Teknologi (pp. 1–9). Universitas Muhammadiyah Jakarta.

Rajan, T. V. S., Sharma, A. K., & Sharma, C. P. (2011). Heat treatment: principles and techniques. PHI Learning.

Saadatkhah, N., Carillo Garcia, A., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., ... & Chaouki, J. (2020). Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. The Canadian Journal of Chemical Engineering, 98(1), 34–43. https://doi.org/10.1002/cjce.23673

Sakthivel, N., Bramsch, J., Voung, P., Swink, I., Averick, S., & Vora, H. D. (2020). Investigation of 3D-printed PLA–stainless-steel polymeric composite through fused deposition modelling-based additive manufacturing process for biomedical applications. Medical Devices & Sensors, 3(6),1–21. https://doi.org/10.1002/mds3.10080

Shbanah, M., Jordanov, M., Nyikes, Z., Tóth, L., & Kovács, T. A. (2023). The effect of heat treatment on a 3D-printed PLA polymer’s mechanical properties. Polymers, 15(6), 1–12. https://doi.org/10.3390/polym15061587

Shrestha, S., Wang, B., & Dutta, P. (2020). Nanoparticle processing: Understanding and controlling aggregation. Advances in Colloid and Interface Science, 279. https://doi.org/10.1016/j.cis.2020.102162

Singhvi, M. S., Zinjarde, S. S., & Gokhale, D. V. (2019). Polylactic acid: Synthesis and biomedical applications. Journal of Applied Microbiology, 127(6), 1612–1626. https://doi.org/10.1111/jam.14290

Sukindar, N. A., Shaharuddin, S. I. S., Kamruddin, S., Azhar, A. Z. A., Choong, Y. C., & Samsudin, N. M. (2022). Comparison study on mechanical properties of 3D printed PLA and PLA/aluminium composites using fused deposition modeling method. Malaysian Journal of Microscopy, 18(1), 1–11.

Wang, S., Ning, J., Zhu, L., Yang, Z., Yan, W., Dun, Y., ... & Bandyopadhyay, A. (2022). Role of porosity defects in metal 3D printing: Formation mechanisms, impacts on properties and mitigation strategies. Materials Today, 59, 133–160. https://doi.org/10.1016/J.MATTOD.2022.08.014

Downloads

Published

2024-11-07
Abstract 183  .
PDF downloaded 108  .