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Abstract - The first model of oxygen transport 
was formulated by August Krogh. However, the 
investigations conducted have yet to yield a complete 
analytical model and a widely applicable solution 
for One-Dimensional (1D) network construction. 
The research sought to provide numerical and 
analytical solutions for the oxygen transfer model in 
mitochondrial cells to enable researchers to estimate 
the molecular dynamics and diffusion characteristics 
in mitochondrial cells. The oxygen diffusion process in 
mitochondria was modeled with ID numerical models. 
The numerical models used to solve the equations 
were explicit and implicit. The explicit model 
consisted of Forward Time Center Space (FTCS) 
and DuFort-Frankel. Meanwhile, the implicit model 
had Crank-Nicholson and Laasonen. The numerical 
solutions of the explicit and implicit were divided into 
four scenarios with a variation of Δt and compared 
with the analytical solutions. The results show that the 
Laasonen method is the best in describing the diffusion 
process. The best scenario with the lowest slope value 
and small Root Mean Square Error (RMSE) value is 
scenario 2 (Δt = 3,33E-4 s and Δx = 2,00E-5 cm). The 
numerical model and analytical solution show that the 
time required to reach a steady state is 0,7 s. It indicates 
oxygen exchange in two sides of the mitochondrial 
cell after 0,7 s.

Keywords: mitochondria cell, One-Dimensional (1D) 
numerical model, oxygen diffusion 

I. INTRODUCTION

The first model of oxygen transport was 
formulated by August Krogh in 1911 (Joyce & Wang, 
2021). August Krogh published three important papers 
describing the model of oxygen (O2) transport from 
capillaries to skeletal muscle, making him win the 
Nobel Prize in Physiology or Medicine in 1920 (Pias, 
2021). For 100 years, a diffusive oxygen transport 
model with a partial pressure of oxygen (PO2) 
profile decreasing systematically with increasing 
distance from the nearest capillary has been a belief 
in the scientific community (Damsgaard et al., 2020). 
However, the intervention of advances in scientific 
techniques, holistic experimental models, and 
convincing empirical data provide strong evidence 
against the other main tenets of Kroghian theory (i.e., 
capillary recruitment, the importance of intra-myocyte 
oxygen diffusion distance, and partial pressure of 
oxygen profile) (Poole, 2019). It is now known that 
the diffusive transport of oxygen from red blood 
cells in capillaries through the intravascular and 
interstitial spaces and into muscle cells and finally into 
mitochondria is more complicated than previously 
thought (Poole et al., 2020). These considerations 
provide new insights and interesting hypotheses to 
be tested regarding oxygen diffusion in mitochondrial 
cells. 

An understanding of the limits of diffusion 
in tissues is essential to studying not only cell 
survival but also many forms of cellular function 
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(Fathollahipour et al., 2019). Specifically, oxygen and 
nutrients must diffuse from the gas and liquid phases 
to a solid phase consisting of individual cells, groups 
of cells, extracellular matrix, hydrogel, or other 
materials to reach the cell (Figueiredo et al., 2018). 
Gas and nutrient levels in tissues have a significant 
effect on stem cell proliferation, differentiation, 
and overall function as it transports through various 
pathways, with oxygen influencing stem cell state, 
gene transcription, neurotransmitter metabolism, and 
cell viability (Salazar-Noratto et al., 2020; Shapira & 
Christofk, 2020; Wan et al., 2021; Wei et al., 2018).

Oxygen diffusion from the alveoli air into the 
pulmonary capillary blood occurs quickly (Saha & 
Chong, 2021). The time the red blood cells spend in 
the lungs near the alveolar sac is usually assumed to 
span between 0,2 s and 0,75 s depending on the activity 
of the subject (typically 0,7 s at rest) (Sikkema et al., 
2022). When it reaches a cell with a low partial pressure 
of oxygen environment, oxygen is released from 
hemoglobin (Hb) and diffuses into the cell. However, 
not all oxygen leaves Hb. The amount released depends 
on tissue of partial pressure of oxygen (Juttukonda et 
al., 2021). In a resting state, venous blood returns to 
the alveolar about 75% of its oxygen content (Lanning 
et al., 2022). The transfer of oxygen from the alveolar 
air to Hb has been the subject of many theoretical, 
experimental, and simulation studies.

Normally, red blood cells act as a local source 
of O2. In the lower panel, the Hb solution is introduced 
at a concentration of 70 mg/ml, with similar Hb kinetic 
parameters to those inside the red blood cells (Popel 
et al., 2003). Thus, the process of oxygen diffusion in 
mitochondria is modeled with One-Dimensional (1D) 
numerical models explicitly (Forward Time Center 
Space (FTCS) and DuFort-Frankel) and implicitly 
(Crank-Nicholson and Laasonen). 

The ability to model the diffusion of oxygen 
into cells is an important consideration in the design 
of tissue constructs (Murphy et al., 2020). With the 
appearance of organoid culture and more complex 
1D tissue models, the modeling and analysis of 
nutrient delivery to cells have become increasingly 
important. Creating diffusion models requires an 
understanding of complex differential equations, 
with a focus on numerical solutions that require 
specialized software and programming skills (Zhao 
et al., 2019). Furthermore, specific formulations 
are generally not available, and even when they are 
available, they are only applicable to certain systems 
and sets of conditions (Berry & Berry, 2018). General 
methods for solving numerically difficult differential 
equations were developed by Euler in the 18th century 
and Runge and Kutta in the 19th century. Then, many 
advanced methods have been and are still developed 
(Bailey et al., 1977). However, the investigations have 
not yet been made into a complete analytical model 
and a widely applicable solution for 1D network 
construction.

Therefore, the research seeks to provide a 
new analytical solution or closed form for the model 

of oxygen transfer in mitochondrial cells to enable 
researchers to estimate the molecular dynamics 
and diffusion characteristics for a particular tissue 
construct. This model shows derivations and solutions 
for several applications of differential equations. 
These models are then applied to mitochondrial cells 
to understand their characteristics and functions 
better. Such approaches and solutions are also broadly 
applicable to all types of tissue, organs, and diffusion 
applications, including modeling and analyzing cell 
function and viability in various 1D tissue constructs. 
It is hoped that integrating the current concepts 
presented in the research will provide additional 
encouragement and direction for research examining 
oxygen diffusion from red blood cells in capillaries to 
mitochondria, both in healthy and diseased conditions.

The researchers try to present a numerical 
solution for the oxygen diffusion equation in 
mitochondrial cells with different initial and boundary 
conditions. Four-time steps are performed on each 
numerical scheme to see the best numerical scheme. 
The research results are expected to describe the process 
of oxygen diffusion at different mitochondrial lengths 
and diffusion coefficients (abnormal conditions). The 
results of the best numerical scheme in modeling 
a closed 1D diffusion process are used as a basic 
guideline when modeling an unclosed 1D diffusion 
process. The best numerical scheme can be used as a 
first step to model oxygen diffusion in mitochondria 
when mitochondria are damaged (injured).

II. METHODS

The governing equation to solve the diffusion 
process is shown in Equation (1). This equation 
is diffusion one dimension at oxygen in Cartesian 
Coordinate. It has T as oxygen centration (mg/ml),  
x as space variable (cm), t as time variable (s), and  
a as diffusion coefficient (cm2/s). Numerical models 
used to solve Equation (1) are explicit and implicit 
models. Explicit models consist of FTCS and DuFort-
Frankel, and implicit models include Crank-Nicholson 
and Laasonen. The numeric solution from explicit and 
implicit will be compared with the analytic solution.

                                                                 (1)

Next, FTCS is an explicit numerical scheme. It 
is used to solve Parabolic Differential Partial (PDP) 
by forward time and central space difference method. 
Solving PDP equation with a finite element (FE) 
equation with explicit FTCS is formulated as follows. 
Then, the numerical scheme of FTCS from Equation 
(2) is shown in Figure 1.

         (2)
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Figure 1 Numerical Scheme of Explicit Forward Time 
Center Space (FTCS). It has n as the time step and j as the 

space step.

To solve the PDP with the FE method, the 
researchers use the explicit DuFort-Frankel scheme. 
The solution is iterated at each time step by updating 
the solution value at a future time based on the 
information at the previous time step. The formula of 
the PDP equation with the FE equation with explicit 
DuFort-Frankel is shown in Equation (3). Then, the 
numerical scheme of DuFort-Frankel from Equation 
(3) is shown in Figure 2.

 
 

         (3)

    

Figure 2 Numerical Scheme of Explicit DuFort-Frankel. 
It has n as the time step and j as the space step.

To solve the PDP by the FE method, the 
researchers also apply the Crank-Nicholson implicit 
scheme. The solution at each time step is updated by 
considering the information at the previous time step 
and according to the half-life ratio. Equation (4) shows 

the PDP equation with an FE equation with implicit 
Crank-Nicholson. Then, with  , Equation 

(4) can be written as Equation (5).

 

     (4)

      (5)

The linear in the matrix to solve this equation, 
with  and , is boundary conditions. Gauss 
elimination can solve linier equation. So, the matrix can 
be formed in Equation (6). Then, the numeric scheme 
for the Crank-Nicholson method from Equation (6) is 
shown in Figure 3.

       (6)

Figure 3 Numerical Form of Crank-Nicholson. 
It has n as the time step and j as the space step.

The Laasonen method is an explicit method with 
the second derivative of oxygen for space at time step 
n + 1. Solving the Partial Differential Equation (PDE) 
equation with the PE equation using the Laasonen 
method can be written in Equation (7). Then, with 
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, Equation (7) can be written as Equation (8).

 

                                          
         (7)

     (8)

Then, Equation (7) becomes a matrix to solve 
this equation, with   and is as boundary conditions. 
Gauss elimination is used to solve this equation. So, 
this matrix in Equation (9) can be formed. Then, 
a numeric scheme for the Laasonen method from 
Equation (9) can be also formed in Figure 4.

     (9)

Figure 4 Numerical Form of Laasonen. 
It has n as the time step and j as the space step.

Equation (1) can be solved with an analytical 
solution. After the analytical solution is obtained, non-
homogeneous boundary conditions or non-uniform 
boundary conditions can be easily incorporated into 
the solution by specifying appropriate values on the 
system boundary.

   (10)

When  is in the steady state for oxygen 
distribution for a long time, it becomes as follows. 
This indicates that the oxygen distribution has reached 
equilibrium. There is no significant change in the 
elapsed time.

    (11)

     (12)

The differential equation  = 0 produces 
Tss to become linear equation of x (Al Mamun et al., 
2018). It is Tss (x) = Ax + B. Applying the boundary 
condition produces B = T1 and , so it obtains 

.

Auxiliary function is defined as τ(x,t) becoming 
T(x,t) = Tss (x) + τ(x,t). It shows τ(x,t) is the difference 
between an actual solution and a steady-state solution. 
Equation (1) adds to the right and left sides, producing 
several following equations. 

   (13)

   (14)

                  (15)

      (16)

So, τ(x,t) qualifies  . It describes 
that the distribution of τ(x,t) maintains equilibrium 
over time and space with a rate of change in time 
(∂τ/∂τ). It is equal to the rate of oxygen diffusion in 
the domain. 

τ(0, t) = 0, T(L, t) = 0, T(x, 0) = F(x) 
with    (17)

PDE or Boundary Value Problems (BVP) is 
solved by applying analytical solutions. They allow 
modeling and solving systems with given boundary 
conditions. PDE/BVP is solved as follows.

    (18)

Then, it has . It 
has cn as a coefficient that describes the contribution 
of the oxygen distribution sin(nπ/Lx) in the Fourier 
expansion of the solution. The analytic solution for 
Equation (1) with the different boundary conditions is 
as follows.

                            (19)
with 

   (20)
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The design of a numerical scheme to solve 
Equation (1) is as follows. A capillary vessel has 
a length of 1×10-3cm in Figure 5 with an initial 
concentration of 0 mg/ml. The oxygen concentration 
on the right side is 70 mg/ml, and the left side is 10 
mg/ml. The value of the diffusion coefficient (a) is 
5,5×10-7 cm2/s at normal blood pressure (PB) of 100 
mmHg based on laboratory results (Popel et al., 2003).

The description parameter of the numerical 
model shown in Table 1 with a time of simulation is 1 
s. The time step of the simulation is used differently as 
it is divided into four categories. This category is used 
to see the stability of each method to solve Equation 
(1) with a numerical model.

After obtaining the best numerical scheme 
and discretization variation in modeling the oxygen 
diffusion process, the time course of oxygen diffusion 
over a range of blood pressure limits will be modeled. 
The range of human blood pressure in capillaries 

varies depending on the location of the capillaries in 
the body and the health condition of the individual. 
However, the average human blood pressure (PB)
generally ranges from 60 to 160 mmHg (Koeppen 
& Stanton, 2023). The effect of a change in blood 
pressure is considered linear to the change in the value 
of a.

III. RESULTS AND DISCUSSIONS

Numerical model stability is used to know the 
approach distribution of 1D oxygen value for the 
diffusion process. Stability occurs when a resulting 
differential equation is finite or does not blow up. 
Von Neumann method is used to know the stability 
as shown in Equation (21). Discretized is stable if it 
is |ρ| < 1.

                                                 (21)

Figure 5 Simulation Scheme for the Numerical Model

Table 1 Parameter Description for Explicit and Implicit Methods

Method
Total Grid

∆x (cm) ∆t (s) Stability 
ValueSpace Time

Explicit

Forward Time Center Space (FTCS) 50

2000

2,00E-05

5,00E-04 0,69
3000 3,33E-04 0,46
3500 2,86E-04 0,39
4000 2,50E-04 0,34

DuFort-Frankel 50

2000

2,00E-05

5,00E-04 0,69
3000 3,33E-04 0,46
3500 2,86E-04 0,39
4000 2,50E-04 0,34

Implicit

Crank-Nicolson 50

2000

2,00E-05

5,00E-04 0,69
3000 3,33E-04 0,46
3500 2,86E-04 0,39
4000 2,50E-04 0,34

Laasonen 50

2000

2,00E-05

5,00E-04 0,69
3000 3,33E-04 0,46
3500 2,86E-04 0,39
4000 2,50E-04 0,34

Note: Δx and Δt are the spatial and temporal resolutions.
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Stability of numerical method FTCS has a 
substitution of Equation (21) to Equation (2), so it 
produces Equation (22). Equation (22) is an important 
step to ensure that the method produces stable 
numerical solutions. Stability is about ensuring that 
the numerical solution does not “blow up” or become 
unstable as time passes.

 

                           (22)

Then, the value of  variates in range 

of . If it is ,             

|ρ| = 1 will adequate the stability conditions for value 

λ. However, if it is , Equation (22) will 

be adequate with  . So, the FTCS method is 
conditionally stable if it is .

Stability of numerical method DuFort-Frankel 
has a substitution of Equation (21) to Equation (3).  
Equation (3) represents the explicit time step in the 
DuFort-Frankel method.

 
       (23)                                                                                                                                             

                                                    
Equation (23) is a quadratic equation with 

a = [1 + 2λ], b = −4λ cos(k∆x) , and c = −[1 − 2λ]. 
The solution of Equation (23) can be found using 
the standard quadratic formula. So, the solution of 
Equation (23) is as follows.

     (24)

The λ is always positive because of  
for every value λ. So, the DuFort-Frankel method is 
unconditionally stable. Therefore, this method remains 
stable in various situations without requiring any 
restrictions on the time step or space discretization.

Stability of numerical method Crank-Nicolson 
is with a substitution of Equation (21) to Equation 
(4). The value of  variates in the range of 

. If it is , it will be 
|ρ| = 1. If it is , |ρ| will depend on 
λ. So, the Crank-Nicholson method is unconditionally 
stable. It can be seen in Equation (25).

 
 

                                         (25)

The stability of numerical method Laasonen 
has a substitution of Equation (21) to Equation 
(7). The value of  variates at a range of 

. If it is , it will be 

|ρ| = 1. Then, if it is , |ρ| will depend 
on λ. So, the Laasonen method is unconditionally 
stable. It can be seen in Equation (26).

 
 

                                         (26)

The result of the numerical mode includes FTCS, 
DuFort-Frankel, Crank-Nicolson, and Laasonen. Each 
method is divided into four scenarios, as shown in 
Table 1. The results of the FTCS method are shown in 
Figure 6 (see Appendices). The FTCS method requires 
stability conditions if it is  . The first 
scenario is unstable because of λ = 0,69. It does not 
satisfy the stability condition. So, the solution blows 
up. Scenarios 2, 3, and 4 show a stable model, and λ 
value satisfies the stability condition (see Table 1).

The result of DuFort-Frankel is shown in 
Figure 7 (see Appendices). The Dufort-Frankel method 
is an unconditional condition. The first scenario shows 
the model remains stable, although it is λ = 0,69. It is 
because the DuFort-Frankel method has no stability 
conditions. Hence, scenarios 2, 3, and 4 also show a 
stable model. The distribution of oxygen changes is 
well illustrated where the oxygen concentration is 
70 g/ml on the left side of the wall. Then, it slowly 
decreases to the left side of the mitochondrial wall.

The result of Crank-Nicolson is shown in 
Figure 8 (see Appendices). This method is also an 
unconditional condition. The difference in time 
steps also does not result in significant differences in 
numerical solutions. All four scenarios are equally 
successful in describing the change in oxygen 
distribution that gradually decreases from the right 
to the left side of the wall. The absence of significant 
differences is also due to the unconditionally 
stable Crank-Nicholson method. In addition, the 
computational process of this method is longer because 
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it requires solving a tridiagonal matrix.
The next modeling also uses four scenarios with 

different time steps. Although there is a considerable 
difference in time steps between the four scenarios, the 
curves show no difference. The difference occurs at 
the beginning of the simulation. There is a spike (the 
value is small). It is an advantage possessed by the 
implicit method. The method is unconditionally stable, 
so it does not depend on the selection of the magnitude 
of the time step that must be used to meet the stability 
conditions like the previous explicit method.

The simulation results with the Laasonen 
method can be seen in Figure 9 (see Appendices). 
Scenarios using four different time steps are also 
applied to this method. However, as can be seen, there 
is no significant difference in the results obtained.

A comparison of oxygen diffusion contours is 
shown in Figure 10 (see Appendices) using the explicit 
FTCS method in scenarios 1 and 4. In Figure 10A (see 
Appendices), the simulation stops at 0,8 s because the 
oxygen concentration value is getting bigger (blow 
up).  Meanwhile, in Figure 10B (see Appendices), 
the simulation proceeds well because it qualifies the 
stability requirements.

A comparison of oxygen diffusion contours 
using the explicit DuFort-Frankel method in scenarios 
1 and 4 is shown in Figure 11 (see Appendices). 
In Figure 11A (see Appendices) in scenario 1, the 
simulation continues, but the value is smaller than the 
value of scenario 4 (Figure 11B (see Appendices)). it 
is due to the difference in the speed of convergence. 
The large difference in the value of ∆t results in a 
difference in the speed of convergence of the oxygen 
diffusion value.

Figure 12 (see Appendices) compares oxygen 
diffusion contours using the implicit Crank-Nicolson 
method in scenarios 1 and 4. In Figure 12A (see 
Appendices) in scenario 1, the simulation progresses, 
but the value has a spike at the beginning of the 
simulation. The approach uses large ∆t, so it takes time 
to adjust. Scenario 4 (Figure 12B (see Appendices)) is 
good because it uses a smaller ∆t. The large difference 
in the value of ∆t results in a difference in the speed of 
convergence of the oxygen diffusion value.

The comparison of oxygen diffusion contours in 
Figure 13 (see Appendices) uses the implicit Laasonen 
method in scenarios 1 and 4, producing almost the 
same results. The convergence speed is also the same 
at 0,7 s. Thus, the Laasonen method produces the best 
simulation results to perform despite the large stability 
value (Table 1). The large difference in ∆t value does 
not result in a difference in the speed of convergence 
of the oxygen diffusion value.

The diffusion equation is a PDE that describes 
density fluctuations in a material undergoing diffusion 
(Vázquez, 2017). Comparison of oxygen diffusion 
contours in Figure 14 (see Appendices) uses the 
analytic solution in scenarios 1 and 4. In Figure 
14A (see Appendices) in scenario 1, the simulation 
progresses. However, the value has a spike at the 
beginning of the simulation because the approach 

uses large ∆t, so it takes time to adjust. Meanwhile, 
scenario 4 (Figure 14B (see Appendices)) is good 
because it uses a smaller ∆t. The large difference in 
the value of ∆t also results in a difference in the speed 
of convergence of the oxygen diffusion value.

Numerical methods will always succeed in 
finding roots (solutions) when they meet the stability 
conditions of each method. However, the speed of 
convergence is different for each method. The speed 
of convergence can be increased if the value of Δt is 
smaller. The fastest converging method is the implicit 
method. In general, the solution with the tridiagonal 
matrix converges. The intersection points of the 
tangent lines of the functions quickly move closer to 
the true roots. The analytical solution also converges 
immediately in scenario 1 with ∆t = 0,0005 s taking 
0,0005 s to converge (Figure 15A (see Appendices)) 
and scenario 4 with ∆t = 0,00025 s converges at 
0,00025 s (Figure 15B (see Appendices)).

A comparison between the numerical solutions 
of each scheme has been made. Inspection of Figure 
16 (see Appendices) shows that the size of the average 
error obtained is closely related to the size of the 
dominant error term in the method used. The error 
values are smaller for the implicit method than for the 
explicit method. The implicit method can adapt the 
forward time equation (explicit method) to the reverse 
time equation by only considering that all outgoing and 
incoming fluxes occur at t + ∆t. The numerical scheme, 
where N is the number of cells in the domain, is more 
difficult to solve because it has N + 2  unknowns. The 
boundary conditions provide the other two missing 
equations. The time forward (explicit method) scheme 
is simpler as it is one equation for one unknown. 
The time backward scheme describes the tridiagonal 
matrix system in the Crank-Nicolson and Laasonen 
schemes. Such systems can be solved using the Gauss-
Seidel elimination method or, more efficiently, the 
Thomas algorithm. The advantage is that the implicit 
always exhibits a solution value that is always stable. 
In this project, the researchers discuss finite difference 
methods for diffusion problems in 1D. The researchers 
analyze the solutions of the C approximation. It can 
be concluded that the method performs well for large 
values. The researchers also present some analytical 
behavior of the problem that explains the presence 
of oscillations in the approximated solution for small 
values of ∆t (Figures 16C and 16D (see Appendices)).

The Central Processing Unit (CPU) time 
required to run with a given value of ∆t depends 
on the value of ∆t used, and this time increases as 
length of Mitochondria cell (L) increases. Moreover, 
there is a difference in the CPU time required by the 
explicit and implicit methods. Implicit methods are 
about 1,3 longer than the explicit methods. Moreover, 
a numerical method based on the approach used 
requires much less computational effort. When the 
results obtained for the explicit formula are compared 
with those of the implicit scheme, the average error of 
the former is generally found to be about two orders of 
magnitude greater than the latter.
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Next, the researchers have compared four 
methods for the solution of diffusion problems in 1D. 
The results show that the Laasonen method is the best 
in describing the diffusion process. The fundamental 
reason lies in the numerical discretization of each 
method, so there is no bias in the Laasonen method 
from the beginning of the scheme to the steady state. 
Meanwhile, in the Crank-Nicholson method, as seen in 
Figures 12 (see Appendices) and 13 (see Appendices), 
there is a spike at the beginning of the scheme because 
the numerical method solves the problem.

The scenarios of the Laasonen method are 
divided into four categories in Table 1. The comparison 
of the results of the analytic solution with the Laasonen 
scheme is shown in Figure 17 (see Appendices). The 
slope value of the graph and RMSE can be seen in 
Table 2. The best scenario with the lowest slope value 
and small RMSE value is scenario 2  (∆t = 3,33E − 04s 
and ∆x = 2,00E − 05s). The error value in the scenario 
(Figure 16A (see Appendices)) is also the closest to 
the value of 0 mg/ml.

Table 2 Slope Value and RMSE of the Analytic 
Solution and Laasonen Method

Method Scenario Slope Root Mean Square 
Error (RMSE) (mg/ml)

Laasonen

1 1.018 2.880
2 1.018 2.875
3 1.041 1.904
4 1.036 2.121

Numerical models for oxygen diffusion are 
usually based on PDE. Four discretization methods 
are used to solve these equations numerically, 
namely FTCS, DuFort-Frankel, Crank-Nicolson, 
and Laasonen. The researchers also need to consider 
appropriate boundary conditions and initial conditions, 
such as initial oxygen concentration, oxygen 
concentration around the membrane, and the rate of 
oxygen supplied or taken up by the tissue, referring 
to laboratory results that have been conducted (Popel 
et al., 2003). The simulation results show that the best 
discretization method is the Laasonen Method.

The Laasonen method is an implicit numerical 
method that combines the forward Euler time scheme 
and the central space scheme to calculate oxygen transfer 
in lung tissue. In this method, time is updated at each 
iteration step using the forward Euler scheme, while 
oxygen displacement is calculated using the central 
scheme. This method has advantages in numerical 
accuracy and stability, as well as fast convergence 
time (Figures 16 and 17 (see Appendices)). The time 
required in the diffusion process (TD) of oxygen is 0,7 
s. This result is in accordance with laboratory results 
conducted previously on the oxygen diffusion process 
in mitochondrial cells under normal circumstances 
(PB = 100 mmHg) (Sikkema et al., 2022). Oxygen 

diffusion time in human blood pressure variations in 
the blood pressure range (PB) 60−180 mmHg can be 
seen in Table 3.

Table 3 Oxygen Diffusion Time at Varying Human 
Blood Pressure

 (mmHg)  (cm2/s)  (s)
60 3,3 x10-7 1,20
80 4,4 x10-7 0,90
100 5,5 x10-7 0,70
120 6,6 x10-7 0,55
140 7,7 x10-7 0,48
160 8,8 x10-7 0,42

Note: blood pressure range (PB ), diffusion coefficient (a), 
and the time required in the diffusion process (TD ).

IV. CONCLUSIONS

Implementation of explicit and implicit finite 
element methods for oxygen diffusion has been 
carried out and validated with analytical solutions. 
The researchers have presented numerical solutions 
with exact solutions for the oxygen diffusion equation 
in mitochondrial cells with different initial conditions 
and boundary conditions. The numerical methods 
used are explicit schemes (FTCS and DuFort-Frankel) 
and implicit schemes (Crank-Nicolson and Laasonen). 
The researchers apply simulation parameter values 
that refer to laboratory calculations for diffusion in 
mitochondria with a simulation duration of 1 s.  Four 
different time steps are performed for each numerical 
scheme to see the best numerical scheme. Simulations 
with explicit schemes (FTCS and DuFort-Frankel) 
are faster than implicit schemes (Crank-Nicolson and 
Laasonen) in terms of solving time. However, relative 
error calculations for the four different numerical 
schemes show that the implicit scheme exhibits a 
better convergence rate than the explicit scheme. 
The implicit scheme also does not require stability 
conditions. Simulation results show that the Laasonen 
scheme best describes the oxygen diffusion process. 
The best scenario is that if the slope value is close to 1, 
and the RMSE value is small, like in scenario 2 (∆t  = 
3,33E-4 s and ∆x = 2,00E-5 cm). The numerical model 
and analytical solution show that the time required 
to reach a steady state is 0,7 s. It indicates oxygen 
exchange in two sides of the mitochondrial cell after 
0,7 s. These results can be utilized for preliminary 
studies to describe the oxygen diffusion process at 
different (abnormal) mitochondrial lengths or diffusion 
coefficients. The best numerical scheme can be used 
to estimate the time for oxygen exchange when the 
mitochondrial length is abnormal. The Laasonen 
method can be developed to research the phenomenon 
of oxygen diffusion further when abnormalities occur 
in mitochondrial cells. 
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Nevertheless, the model is limited to only 
being used in one dimension. Therefore, for further 
research, additional modeling is needed to expand 
into three dimensions. It is necessary to accommodate 
more complex and in-depth aspects that may exist 
within a three-dimensional environment. In addition, 
further research can modify the initial conditions and 
boundary conditions in the numerical model to learn 
more about the factors that affect oxygen diffusion. For 
example, it can consider changes in mitochondrial air 
temperature and pressure to see the impact on oxygen 
transfer time.
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APPENDICES

Figure 6 Simulation Results of Oxygen Diffusion with Forward Time Center Space (FTCS) 
method in Scenario 1 to Scenario 4

Figure 7 Simulation Results of Oxygen Diffusion with DuFort-Frankel Method 
in Scenario 1 to Scenario 4
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Figure 8 Simulation Results of Oxygen Diffusion with Crank-Nicolson Method 
in Scenario 1 to Scenario 4

Figure 9 Simulation Results of Oxygen Diffusion with Laasonen Method 
in Scenario 1 to Scenario 4
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(A)

(B)

Figure 10 Oxygen Diffusion Contours Using the Explicit FTCS Method 
in Scenario 1 (A) and Scenario 4 (B)

(A)
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(B)

Figure 11 Oxygen Diffusion Contours Using the Explicit DuFort-Frankel Method 
in Scenario 1 (A) and Scenario 4 (B)

(A)

(B)

Figure 12 Oxygen Diffusion Contours Using the Implicit Crank-Nicolson method 
in Scenario 1 (A) and 4 (B)
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(A)

(B)

Figure 13 Oxygen Diffusion Contours Using the Implicit Laasonen Method 
in Scenario 1 (A) and Scenario 4 (B)

(A)
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(B)

Figure 14 Oxygen Diffusion Contours Using the Analytic Solution 
of ∆t = 0,0005 s (A) and  ∆t = 0,00025 s (B)

(A)

(B)

Figure 15 Convergence of Oxygen Diffusion Using Analytical Solutions 
of ∆t = 0,0005 s (A) and ∆t = 0,00025 s (B)
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(A)

(B)

(C)
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(D)

Figure 16 Error of Analytic Solution with Forward Time Center Space (FTCS) (A), 
DuFort-Frankel (B), Crank-Nicolson (C), and Laasonen (D) Models

Figure 17 The Comparison of the Results of the Analytic Solution 
with the Laasonen Scheme


