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Abstract - In the case of ponds with Litopenaeus 
Vannamei shrimp, water quality parameters play 
a significant role in shrimp growth. Leveraging 
technology enhances water quality to optimize growth 
and survivability in the shrimp farming industry. The 
research aimed to empower local farmers with smart 
shrimp farming technologies, including Information 
Technology (IT), such as the Internet of Things 
(IoT), and Fuzzy Logic. The research also involved 
a comparison between Litopenaeus Vannamei shrimp 
in two different aquariums: one serving as a control 
group and the other implementing IoT and Fuzzy 
Logic for a period of 30 days. The initial Litopenaeus 
Vannamei shrimp stocking was 135 shrimps for control 
aquariums and 132 for experimental aquariums. Then, 
the research used Arduino ESP 8266, Raspberry Pi 
3, and SciKit-Fuzzy library to record and process the 
data. Through the application of IoT and Fuzzy Logic, 
the research successfully increases survivability 
by 6%, specific growth rate by 28%, and length by 
8% in 30 days compared to conventional methods. 
The results highlight the potential use of technology 
in Litopenaeus Vannamei shrimp farming. The 
proposed system’s hardware and software architecture 
can be easily scaled to accommodate the needs of 
Litopenaeus Vannamei shrimp farmers with multiple 
ponds, offering flexibility and adaptability.

Keywords: smart shrimp farming, Internet of Things 
(IoT), Fuzzy Logic  

I. INTRODUCTION

Shrimp cultivation is one of the most popular 
aquaculture sectors among the people in Indonesia. 

Shrimp cultivation in 2019 contributed 36,27% of the 
total value of fishery exports in Indonesia. Shrimp 
export volume was recorded at 197,43 thousand tons 
in 2018 and 517,39 thousand tons in 2019. Then, it is 
predicted that in 2024, shrimp aquaculture production 
will reach 1.290 thousand tons (Balai Perikanan 
Budidaya Air Payau Situbondo, 2021). However, 
many traditional shrimp farmers still do not pay 
attention to water quality or use complete equipment 
to monitor water quality (Sukaridhoto et al., 2017). 
Traditional farmers still predict water quality based on 
shrimp behavior during rearing.

In terms of water quality, many parameters can 
affect the growth and development of shrimp, such 
as but not limited to temperature, Dissolved Oxygen 
(DO), and Potential of Hydrogen (pH). According 
to Venkateswarlu et al. (2019), the best water 
temperature is at 24,47 °C, with a DO value of 5,37 
mg/L and pH value of 7,67. Then, it is also believed 
that these parameters will also fluctuate and can have a 
negative impact on shrimp growth and development if 
these parameters are outside the tolerance limit of the 
shrimp (Sukaridhoto et al., 2017).

Internet of Things (IoT) and Fuzzy Logic can be 
a solution to maintain water quality in shrimp ponds in 
Indonesia. By using IoT, monitoring and controlling 
can be done automatically and remotely through the 
Internet in real time (Herman et al., 2019). On the other 
hand, the Fuzzy Logic method adopts human judgment 
on a truth, which is expressed in a continuous function 
from 0 to 1. In contrast to classical logic, which states 
everything is true or false or yes or no (Utama et al., 
2020). Combining these two technologies is expected 
to optimize pond water quality automatically and 
independently of human decisions.
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Several previous studies have conducted 
research in the field of IoT and Fuzzy Logic. Fuzzy 
Logic is implemented to generate true random 
numbers and routing networks (Kumar & Saminadan, 
2019; Tatas & Chrysostomou, 2017). Moreover, IoT 
and Fuzzy Logic are adopted on smart home gateways 
to calculate decisions for emergency vehicles (Firouzi 
et al., 2020; Rout et al., 2020). These four previous 
studies show that Fuzzy Logic can improve the previous 
system, such as faster and more accurate decision-
making, low-level intelligence, and scalability in the 
proposed system. In the field of aquaculture, Fuzzy 
Logic classifies air quality based on sensors installed 
on IoT (Shandikri & Erfianto, 2021; Bokingkito Jr 
& Caparida, 2018; Agustianto et al., 2021). It sends 
information to farmers so that farmers can make 
decisions more quickly and accurately.

Moreover, previous research on smart shrimp 
farming has automated the inspection of water 
quality parameters in ponds. The goal is to develop 
a smart aquaculture monitoring system that can 
automate the inspection of water quality parameters, 
such as pH, DO, and temperature, in real time. The 
system is tested at an actual site located at Fisheries 
Research Institute (FRI), Gelang Patah, Johor. It can 
provide reliable and accurate data when compared 
to commercial devices used (Abdullah et al., 2021). 
Previous research is different from the current research 
that utilizes Arduino ESP 8266 to collect data and to 
be an actuator. Arduino is programmed as a JavaScript 
Object Notation (JSON) Web Server. Then, Raspberry 
Pi 3 can call a web server to retrieve sensor data or 
to command the actuator. Such an approach can help 
horizontal scalability with ease and lower cost as 
shrimp farms tend to utilize numerous ponds.

In the research, Arduino is used as a tool to 
read and measure water quality parameters, such as 
temperature, pH, and DO in water. The device used 
for reading and measuring is Arduino Uno with built-
in ESP8266. This device can also be connected to a 
wireless router and function as a JSON Web Server. 
Then, the Raspberry Pi 3 calls the Arduino web server, 
which will read the parameter data and supply it to 
the Fuzzy Logic model. Next, the model will call the 
actuator, which will run the heater, aerator, and buffer 
solution according to the results of the Fuzzy Logic 
model.

Referring to Atmaja et al. (2018), the use of 
heaters is positively correlated with increasing water 
temperature. Meanwhile, the previous research 
concludes that the use of aerators can also be positively 
correlated with increasing the DO value in the water 
(Yuswantoro et al., 2018). According to De Araújo et 
al. (2020), Calcium Carbonate (CaCO3) water can 
be used to increase the pH of pond water, which is 
safe for shrimp. Next, it is revealed that there is a 
correlation between the use of aerators and the pond 
water temperature (Abdelrahman & Boyd, 2018). The 
use of an aerator can reduce the temperature of the 
water in the pond. The higher the temperature is, the 

minimum DO before mass mortality in shrimp also 
increases.

The primary goal of the research is to leverage 
IoT and Fuzzy Logic to enhance and maintain optimal 
water quality in shrimp ponds, thereby maximizing 
shrimp growth, development, and survivability for 
farmers. The research benefits can be a foundation for 
introducing technological advancements in aquatic 
aquaculture, with a particular focus on shrimp farming. 
The research aims to increase the survivability, length, 
and weight of cultured shrimp while improving the 
overall efficiency of the industry.

II. METHODS

The research begins with a literature study on 
shrimp farming and IoT architecture and what logic 
is used when the sensor triggers an anomaly that is 
outside the standard. The researchers use several 
journals as a reference for how to cultivate shrimp. 
For example, Tacon et al. (2013) provided information 
on shrimp feeding standards. Then, several other 
journals, such as Durai et al. (2021), Venkateswarlu 
et al. (2019), Chakravarty et al. (2016), De Araújo 
et al. (2020), and Ni et al. (2018), summarize water 
quality parameter standards for shrimp farming. From 
these standard parameters, the rules are used for Fuzzy 
Logic. 

There are many approaches for architecture and 
actuators in IoT. The book by Rusli (2017) is used 
as a basis for designing Fuzzy Logic in the system 
created. After the architectural design is complete, the 
microcontroller is programmed. Then, Fuzzy Logic is 
implemented, and the actuators are configured. Next, 
a System Integration Testing (SIT) is carried out to 
ensure the design has gone well. To try the system, 
the researchers use an empty aquarium, which is filled 
with water and controlled by the system to achieve the 
target water quality parameters set on Fuzzy Logic. If 
the water quality can achieve the target and the system 
can maintain the water condition, the SIT is considered 
successful.

Next, there are two aquariums, one for research 
and one for control. The aquariums are filled with 
Litopenaeus Vannamei shrimp. The aquarium for 
research applies a system that has been developed, 
while the control aquarium is only limited to water 
quality parameter standards. Several shrimps are 
taken as samples at the shrimp stocking stage to 
measure the weight at stocking. Then, each aquarium 
is stocked with 135 shrimps for control aquarium and 
132 shrimps for experimental aquarium as the initial 
population. This cultivation lasts for 30 days. The last 
stage is to evaluate the development of shrimp in both 
aquariums (research and control). On the thirtieth day, 
the shrimps’ number populations, weight, and length 
are measured to evaluate the experiment and control 
aquariums’ performance. The research stages can be 
seen in Figure 1.
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For the details, the aquariums have a length 
of 60 cm, a width of 30 cm, and a height of 35 cm. 
Both aquariums are filled with seawater to a height of 
30 cm. The initial stocking in both aquariums is 135 
shrimps for the control aquariums and 132 shrimps for 
the experiment aquarium. These shrimps are cultivated 
for 30 days. The feed given in this experiment is a 
composition of 35% protein and 8% lipid diet with the 
following feeding in Table 1 (Tacon et al., 2013). The 
average initial weight at stocking is 0,18 g. For the 
research, shrimps are given 2,43 g of feed every 3,5 
hours, following Table 1 of feeding rate and interval.

At the beginning and the end of the research, 
the initial and final population of Litopenaeus 
Vannamei are recorded to calculate the percentage of 
its survivability (%SR). The higher the percentage is, 
the better the performance of the tub will be. Equation 
(1) calculates the survivability (Sharawy et al., 2022). 
It has %SR as the survivability percentage, Fn as the 
final number of juvenile shrimps, and In as the initial 
number of juvenile shrimps.

        (1)

At the beginning of the shrimp stocking, ten 
samples are taken randomly, and the weight of the 
shrimp’s body is measured. After 30 days of cultivation, 
the weight of the shrimp will be measured again by 
sampling 10 shrimps for each research and control 
aquarium. Specific Growth Rate (SGR) calculates the 
difference between the initial and final weight of the 
shrimps divided by the number of days of cultivation. 
The higher the SGR is, the more the shrimp will grow. 
Equation (2) calculates SGR (Sharawy et al., 2020). 
FBW as final body weight, IBW as initial body weight, 
and T as time in days.

       (2)

Next, Length Growth (Pm) calculates shrimps’ 
length growth. It calculates the difference between the 
initial length at the time of stocking and the length at 
the end of the research. The greater the length is, the 
more the shrimps will grow (Manurung et al., 2018). 
It is shown in Equation (3). It includes Pm as the 
mean length of shrimp (mm), Pt as the average length 

Figure 1 Research Stages Diagram

Table 1 Feeding Reference to Feed Shrimps for the Research (Tacon et al., 2013)

Average Body Weight 
(ABW) (g)

Feeding Rate (%) Estimation Survival (%) Interval Feeding (Hour)

< 1 10,0 100 3,5
1−3 8,0 98 3,5
3−5 6,0 96 3,5
5−7 5,0 94 2
7−9 4,0 92 2
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of shrimp at the end of the research (mm), and P0 as 
the average length of shrimp at the beginning of the 
research (mm).

         (3)

The research also reads and measures water 
quality during the cultivation of Litopenaeus 
Vannamei shrimp. The parameters recorded are as 
follows: temperature, pH, and DO. Table 2 explains 
the importance of these parameters during cultivation. 
It is adopted from Venkateswarlu et al. (2019).

Table 2 Water Quality Parameters Scope in the Research 
and Their Importance for Shrimps.

Parameters The Importance of Parameters 
in Litopenaeus Vannamei 
Cultivation

Temperature Influencing photosynthesis in 
water, physiological responses 
of culture organisms, and 
decomposition of organic matter.

Potential of 
Hydrogen (pH)

Being a vital environmental 
characteristic as it affects the 
metabolism and other physical 
aspects of shrimps. 

Dissolved Oxygen 
(DO)

Having a direct effect on feed 
consumption and affecting 
solubility and availability of 
nutrients in pond water. 

Based on previous research in Table 3, it is 
evident that water quality parameters play a pivotal role 
in the development of Litopenaeus Vannamei Shrimps. 
Temperature, DO, and pH are identified as the most 
influential factors affecting the well-being of these 
shrimps, influencing their growth, and survivability. 
As a result, the research places significant emphasis 
on these key parameters. The researchers aim to 

monitor and enhance water quality by implementing 
an innovative approach that combines the power of 
IoT technology with Fuzzy Logic algorithms. This 
integration will provide real-time data and decision-
making capabilities to maintain and optimize the 
ideal conditions for Litopenaeus Vannamei shrimps, 
ultimately ensuring their growth and survivability.

The water in the experiment aquarium is 
sampled by the microcontroller sensor. Raspberry 
Pi 3 reads the microcontroller using Python, which 
is called Arduino’s Internet Protocol (IP) address. 
Then, it processes the data into Fuzzy Logic. Based 
on the results of the Fuzzy Logic, the Raspberry Pi 3 
instructs the actuator microcontroller so that the water 
parameters will adjust to the standard that has been 
set. The sensor data that is read and the Fuzzy Logic 
results are uploaded to the Oracle Apex database. 
Then, these data can be consumed by mobile devices 
or computers, as shown in Figure 2. By using this 
template, horizontal scalability can be achieved easily 
by addressing each Arduino with their respective IP 
addresses.

The device for measuring and recording water 
quality is Arduino Uno Built-in ESP8266. Arduino is 
connected to a local area network with a 2.4 GHz 802.11 
Wi-Fi network. Then, all the sensors connect to the 
Arduino Uno Built-in ESP8266 board using data and 
analog pins. Arduino Uno Built-in ESP8266 functions 
as a JSON Web Server where the sensor reading output 
can be viewed using the HTTP GET method at its IP 
address. Then, Raspberry Pi 3 runs a Python script that 
reads the IP address and sends the data to the Oracle 
Database in AWS using CxOracle. At the same time, 
the readings go through fuzzification, and Fuzzy 
Logic begins. Simpful library used for the research is 
the Mamdani FIS method (Spolaor, 2020). Arduino 
operates the heater and aerator, and the peristaltic 
pump runs on JSON Webserver. Fuzzy Logic output 
can be stored using HTTP GET on Arduino Actuator. 
After the value has been set, the water quality will 
change and improve. This loop will repeat after 2,5 
minutes. The data flow can be described in Figure 3.

Table 3 Water Quality Parameters for Creating Fuzzy Membership and the Aggregated Value Using Average

Researchers
Temperature (°C) Dissolved Oxygen (DO) 

(mg/L)
Potential of Hydrogen 

(pH)

Min. Max. Min. Max. Min. Max.
Durai et al. (2021) 28,0 32,0 4,99 - 7,5 8,5 
Venkateswarlu et al. (2019) 24,47 28,62 5,37 6,16 7,67 7,88
Chakravarty et al. (2016) 26,5 28,0 4,4 8,6 6,95 8,38
De Araújo et al. (2020) 28,0 32,0 5,0 9,0 7,5 8,5
Ni et al. (2018) 22,15 36,73 6,66 13,83 7,85 9,46
Average 25,82 31,34 5,28 9,40 7,49 8,56
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For the temperature sensor, the DS18B203 
sensor is used. This sensor has three pins: Voltage at 
Common Connector (VCC), Ground, and Data. The 
data pin is connected to VCC using a 4,7 kΩ resistor 
as the pull-down resistor. Then, the DS18B203 sensor 
can measure temperature from -50°C up to 125°C with 
an accuracy of 0,1°. For pH, a PH-4502C sensor is 
used. This sensor reads pH value of the liquid with 
an analog signal between 0 v to 5 v. Three buffer 
solutions have been prepared with pH of 4,01(25°C), 
pH of 7,01(25°C), and pH of 10,01(25°C) to calibrate 
PH-4502C sensor. From each buffer solution, a voltage 
measurement is recorded ten times each. Next, using 
the Sklearn library in Jupyter, a Linear Model is made 
using Linear Regression using measured voltage and 
pH. From the Linear Regression model, the researchers 

gain the formula as follows: pH = -5,546 * V + 22,222. 
This formula is applied to Arduino for measuring pH 
(Rozie et al., 2020). 

The DO sensor used is SEN0237 DFRobot. This 
sensor reads the oxygen content in the liquid and sends 
an analog signal that the Arduino pins can read. This 
sensor uses a Galvanic Probe and has a detection range 
from 0 mg/L to 20 mg/L (DFRobot, n.d.). All sensors 
have a voltage-VCC of 5 volts. Then, a capacitor with 
1000 μF is used for smoothing the supplied voltage. 
The temperature sensor is connected to the Digital 
Pin 2. The pH sensor is connected to Analog Pin 1, 
and the DO sensor is connected to Analog Pin 2. The 
following diagram in Figure 4 shows the relationship 
between the sensor and Arduino.

Figure 2 Proposed Design Architecture System

Figure 3 Block Diagram of Proposed System and Monitoring
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The board that controls the actuator also uses 
the Arduino Uno Built-in ESP8266. JSON Web Server 
is also used to control the installed actuator. After the 
Fuzzy Logic has been calculated successfully, the 
Fuzzy Logic output will call the actuator using the 
JSON Web Server and provide the value. The Arduino 
Uno Built-in ESP8266 board accepts this value and 
runs a command to set the amount of current in the 
called actuator. For actuator aerators and peristaltic 
pumps, a voltage of 12v is required to drive the 
motor. Then, the speed of the aerator and peristaltic 
pump can be controlled by using the motor driver. 
Then, the motor driver gets a Pulse Width Modulation 
(PWM) signal from Arduino to determine the speed 
of the Actuator. Next, the heater is connected to the 
Alternating Current (AC) dimmer, which regulates 
the AC that enters the heater. The Fuzzy Logic output 
can have a value from 0 to 100, where 0 will turn 
off the heater, and 100 will turn on the heater with 
maximum current. Figure 5 shows a schematic of the 
pin addressed to motor drivers and AC dimmers.

Similarly, Fuzzy Logic is used to control water 
quality. First, the data from the sensor are processed 

with fuzzification. At this stage, the data from each 
sensor are classified into a degree of membership. Then, 
the previously created rule matches the membership 
results to produce Fuzzy output data. This output is 
processed into an output value that the actuator can 
read. This stage is called defuzzification (Ramadhan & 
Utama, 2019). Figure 6 explains how data flow from 
the sensor goes through the Fuzzy Logic controller 
and output data to the actuator.

In the research, Fuzzy Logic is run from a 
Python program using the SciKit-Fuzzy library. The 
library uses Mamdani Defuzzification to calculate 
Fuzzy Logic output. In applying Fuzzy Logic, three 
stages must be defined: fuzzification, rule base, 
and defuzzification. From Table 3, the average 
recommended water parameter is converted into 
five inputs of Fuzzy membership equally from the 
minimum and maximum value in each parameter. At 
this stage, data read from the sensor are converted to 
Fuzzy Membership. Figure 7 to 9 are the membership 
functions for each parameter: temperature, DO, and 
pH.

         

Figure 6 Fuzzy Logic Flow 
(Source: Costea et al., 2010; Ramadhan & Utama, 2019)

Figure 4 Arduino Uno Built-In ESP8266 
and Sensors Schematic

Figure 5 Arduino Uno Built-In ESP8266 
and Actuators Schematic
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The rule base is made using the Mamdani Fuzzy 
inference system. A set of rules must be made to 
determine when the actuator aerator, heater, and 
peristaltic pump will turn on and how much intensity 
the actuator will turn on to improve water quality, 
according to Table 3. Three groups of rules are 
implemented in Fuzzy Logic. The first rule turns on 
the aerator actuator based on input from the DO and 
temperature sensors. The first rule can be summarized 
in Table 4. Then, the second rule turns on the actuator 
heater based on the temperature sensor and the Fuzzy 
Logic actuator output on the first rule. The second 
rule can be summarized in Table 5. Next, the third 
rule turns on the peristaltic pump actuator, which will 
increase the pH or decrease the pH. This actuator reads 
the results of the pH sensor and is directly proportional 
to the results of the actuator. This third rule can be 
summarized in Table 6 (see Appendices).

At the defuzzification stage, the Mamdani 
method is used. This method is obtained by taking 
the center point of the Fuzzy area (Djunaidi et al., 
2005). This method can be seen in Equation (4). In 
this equation, it has X as the input variable, Xi  as the ith 
value of X, and μ(Xi ) as the membership function of Xi . 
The numerator of the equation is the Sum(Σ) of X times 
the membership function of X, while the denominator 
is the sum of the membership function of X.

        (4)

Defuzzification also changes the output value to 
output membership. The research uses three actuators 
for actuator output: heater, aerator, and peristaltic 
pump. The maximum size for these three actuators 
is minimum 0 and maximum 100 for the heater, 
minimum 0 and maximum 100 for the aerator, and 
minimum -3000 and maximum 3000 for the peristaltic 
pump.

From these three actuators, a Fuzzy set is 
made. Each has five membership sets: poor, mediocre, 
average, decent, and good. This membership is 
applied to each actuator of the heater in  Figure 10, the 
aerator in Figure 11, and the peristaltic pump in Figure 
12. The heater operates within a range of 0 to 100, 
corresponding to the Pulse Width Modulation (PWM) 
of an Alternating Current (AC) Dimmer. In contrast, 
the aerator provides output values ranging from 0 to 
100, where 0 signifies that the motor is completely 
stationary, and a value of 100 signifies that the motor 
is running at full current draw. The motor of the aerator 
is controlled by a Motor Driver L298N. The peristaltic 
pump, on the other hand, delivers output values within 
the range of -3000 to 3000. In the context of the system, 

Figure 7 Fuzzy Membership Function 
of Temperature Input

Figure 8 Fuzzy Membership 
of Dissolved Oxygen (DO) Input

Figure 9 Fuzzy Membership Function 
of Potential of Hydrogen (pH) Input
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Table 4 Aerator Rule Actuator

 Dissolved Oxygen (DO)

Poor Mediocre Average Decent Good

Te
m

pe
ra

tu
re

Poor Aerator(Good) Aerator(Decent) Aerator(Average) Aerator(Mediocre) Aerator(Poor)
Mediocre Aerator(Good) Aerator(Decent) Aerator(Average) Aerator(Mediocre) Aerator(Mediocre)
Average Aerator(Good) Aerator(Decent) Aerator(Decent) Aerator(Average) Aerator(Mediocre)
Decent Aerator(Good) Aerator(Good) Aerator(Decent) Aerator(Average) Aerator(Average)
Good Aerator(Good) Aerator(Good) Aerator(Good) Aerator(Decent) Aerator(Average)

Table 5 Heater Rule Actuator

 Temperature
Poor  Mediocre Average Decent Good

A
er

at
or

Poor Heater(Good) Heater(Decent) Heater(Average) Heater(Mediocre) Heater(Poor)
Mediocre Heater(Good) Heater(Decent) Heater(Average) Heater(Mediocre) Heater(Mediocre)
Average Heater(Good) Heater(Decent) Heater(Decent) Heater(Average) Heater(Mediocre)
Decent Heater(Good) Heater(Good) Heater(Decent) Heater(Average) Heater(Average)
Good Heater(Good) Heater(Good) Heater(Good) Heater(Decent) Heater(Average)

Table 6 Peristaltic Pump Rule Actuator

Potential of Hydrogen (pH)
Poor Mediocre Average Decent Good
Peristaltic Pump(Good) Peristaltic Pump(Decent) Peristaltic 

Pump(Average)
Peristaltic 
Pump(Mediocre)

Peristaltic Pump(Poor)

Figure 10 Fuzzy Membership Function of Heater Output Figure 11 Fuzzy Membership Function of Aerator Output

Figure 12 Fuzzy Membership Function of Peristaltic Pump Output
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negative Fuzzy Logic results instruct the peristaltic 
pump to pump seawater, resulting in a reduction of the 
water’s pH. Conversely, positive Fuzzy Logic results 
prompt the peristaltic pump to dispense CaCO3 water 
solution, increasing the pH value in the system.

III. RESULTS AND DISCUSSIONS

The sensor successfully reads temperature, DO, 
and pH at 2,5 minutes intervals, and the actuator can 
improve and maintain water quality for shrimp using 
the proposed system. For 30 days, the researchers 
retrieve sensor data from Arduino ESP 8266 and 
calculate the data using Fuzzy Logic. Then, output data 
are sent to the cloud database and displayed through 
the Application Express (APEX) application from 
Oracle AS. APEX application is a web application that 
can connect with the Oracle database, as described in 
Figure 2. The web created with the APEX application 
already has a web-responsive feature so that it can be 
consumed by desktops (Figure 13 (see Appendices)) 
and mobile devices (Figure 14 (see Appendices)). 
The reporting page shows line charts between water 
parameters and their corresponding actuators. The 
report page can also filter from which date to which 
date. It also shows the latest received value from 
Raspberry Pi.

Figure 15 (see Appendices) to 17 (see 
Appendices) are graphs of sensors recorded for 30 
days from 01 Apr 2022 to 30 Apr 2022. Table 4. Each 
figure represents each model for Fuzzy Logic with 
corresponding output using the rule base in Tables 4 
to 6. Figure 15 (see Appendices) shows temperature 
and DO sensors to calculate aerator output using the 
rule base in Table 4. The blue line shows the Fuzzy 
Logic output of the aerator. Then, the dashed red 
line represents temperature, and the solid red line 
represents DO. The output value of the aerator is used 
to calculate the heater in Figure 16 (see Appendices). 
In Figure 16 (see Appendices), the value is presented 
by a solid red line for the aerator, a dashed red line 
for the temperature sensor, and a solid blue line for 
the heater output. Both aerator and heater output 
values follow the rule set previously. Figure 17 (see 
Appendices), shows the calculated peristaltic pump 
value based on pH value. Red dots present the output 
of the peristaltic pump, and a solid black line is used 
to mark 0 milliseconds. Each dot above the black 
solid line means that the peristaltic pump doses it to 
increase the pH level in the water. Vice versa, each dot 
below the black solid line means that the peristaltic 
pump doses water to decrease the pH level. The value 
for each blue dot is calculated by Fuzzy Logic using 
the rule in Table 6, and the value for pH sensors is 
represented by the solid red line.

Table 7 (see Appendices), shows the sensor 
recording results using IoT. It shows temperature 
values with an average of 32,02 °C, a maximum of 
33 °C, a minimum of 27 °C, and a standard deviation of 
0,69. Then, the DO sensor results in an average of 7,01 
mg/L, a maximum of 8,46 mg/L, a minimum of 5,3 

mg/L, and a standard deviation of 0,61. Meanwhile, the 
pH sensor results have an average of 7,65, a maximum 
of 8,83, a minimum of 6,17, and a standard deviation 
of 0,86. To validate the correct value of the water 
from sensor readings, the researchers use AR8210 
DO. Next, temperature sensor tools and the EZ-9901 
pH sensor tool compare the IoT sensor reading with 
actual water conditions. The validation is carried out 
each week to calculate the error rate, accuracy, Root 
Mean Square Error (RMSE), and Mean Absolute Error 
(MAE) of the proposed system performance. RMSE is 
calculated as the square root of the average squared 
difference between IoT sensors and sensor tools. As 
for MAE, it is calculated by adding up all the absolute 
differences and dividing them by the number of test 
differences. The results for temperature parameters 
have an average error of 0,94%, accuracy of 99,06%, 
RMSE of 0,36, and MAE of 0,30. Meanwhile, DO 
parameters consist of an average error of 3,83%, 
accuracy of 96,17%, RMSE of 0,34, and MAE of 0,27. 
Last, pH parameters have an average error of 3,25%, 
accuracy of 96,75%, RMSE of 0,32, and MAE of 0,25

Shrimps have been cultured for 30 days (01 Apr 
2022 to 30 Apr 2022). Figure 18 (see Appendices) shows 
two aquariums: the left is a research aquarium, and 
the right is a control aquarium. The research aquarium 
has an IoT system implemented and monitored. Both 
aquariums have an aerator, heater, filter pump, and 
auto feeder, but the control aquarium cannot change 
the heater and aerator value. Meanwhile, the research 
aquarium is monitored by a designed IoT system. 
During the first ten days, shrimps have been taken as 
samples on the first day (stocking) and last day. From 
the control aquarium sample, the shrimps are weighed, 
and body length is measured. The average weight of 
shrimp at the beginning of stocking is 0,18 g with an 
average body length of 25,4 mm. At 30 days (Days 
of Culture (DOC)), it has an average weight of 0,39 
g with an average body length of 32,0 mm for the 
control aquarium and an average weight of 0,50 g with 
an average body length of 34,6 mm for experiment 
aquarium. Figure 19 (see Appendices) shows the 
weight distribution for initial shrimps in control and 
experiment aquariums on the first day to the thirtieth 
day. Then, Figure 20 (see Appendices) shows the 
shrimp’s distribution length for the initial day and the 
length in the control and experiment aquarium on the 
thirtieth day.

Next, an independent sample T-test is used 
to check the effectiveness of IoT in the experiment 
aquarium compared to the control aquarium. Data 
to calculate the T-test are presented in Table 8 (see 
Appendices). Then, Table 9 (see Appendices) shows 
the calculated statistics for both results. Then, two sets 
of hypotheses are used to determine the experiment 
result’s significant value (p). The experiment result is 
not statistically significant if a significant value is more 
than 0,05 (p ≥ 0,05). Using the null hypothesis (H0), 
it can assume the observed difference in experiment 
and control results due to chance alone. Alternatively, 
if the significant value is less than 0,05 (p < 0,05), 
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the experiment result is statistically significant. So, 
the researchers can reject the null hypothesis (Ha). It 
means that the experiment result using IoT increases 
the growth in shrimp’s weight and length. 

Weight in the experiment aquarium has a 
significant increase (weight experiment of Mean (M) 
= 0,50 g, Standard Deviation (SD) = 0,09 g) compared 
to the control aquarium (weight control of M = 0,39 
g, SD = 0,06 g), with T-test for weight sample of 
t(9) = 2,939, p = 0,008. Since the p-value of 0,008 is 
less than the commonly chosen significance level of 
0.05, it indicates that the weight growth is statistically 
significant. For length in the experiment aquarium, 
there is no significant increase (length experiment 
with M = 34,6 mm and SD = 6,39 mm) compared to 
the control aquarium (length control experiment with 
M = 32,0 mm and SD = 5,65 mm) with T-test for 
length sample t(9) = 0,962, p = 0,348. For the length 
p-value is 0,348, it is greater than the commonly 
chosen significance level of 0,05. This indicates that 
the length growth is not statistically significant. In 
summary, the significant value for weight is less than 
0,05 (p < 0,05), but the length is more than 0,05 (p ≥ 
0,05). It can be concluded that using IoT in aquariums 
only affects weight growth but not length growth for 
the tested shrimps.

Many factors affect the growth of shrimp length, 
but the research fails to prove that IoT affects shrimp 
length. For example, nitrate waste has a negative 
impact on the growth of shrimp (Valencia-Castañeda 
et al., 2018). In addition, other parameters, such as 
stocking density, pond size, and salinity, also affect 
the growth of the shrimp (Thakur et al., 2018). Hence, 
further research is needed to prove whether these 
parameters can help increase the growth of shrimp 
length.

At the beginning of the stocking, the population 
was 135 shrimps for the control aquarium and 132 
shrimps for the experiment aquarium. At the end of 
the research on the 30 DOC populations, it is 113 
shrimps for the control aquarium and 119 shrimps 
for the experiment aquarium. From the experiment 
aquarium, the average shrimp weight at the stocking 
beginning is 0,39 g with a length of 25,40 mm. At 30 
days, the control aquarium’s shrimps have an average 
weight of 0,39 g with a length of 32,00 mm. Then, 
the experiment aquarium’s shrimps have an average 
weight of 0,50 g with a length of 34,60 mm. 

Data population from beginning to end of 
research can be calculated using the %SR formula in 
Equation (1) by dividing the end population by the 
beginning population and multiplying it by 100%. 
Then, weight data can be calculated with the SGR 
formula in Equation (2) by subtracting the end weight 
from the beginning weight and dividing it by the 
number of days, and multiplying it by 100 (in this 
case, 30 days). This formula results in the growing 
shrimp weight rate for each DOC. Overall shrimps’ 
growth length can be calculated by subtracting the 
end length from the beginning length using Equation 
(3). Table 10 (see Appendices) shows a comparison of 

the control aquarium versus the experiment aquarium. 
By using the proposed system in Figure 2, experiment 
aquarium shows increasing growth potential in 
shrimps’ population, weight, and length than control 
aquarium. However, the increase in length is not 
significant enough.

IV. CONCLUSIONS

Using the proposed system with IoT and Fuzzy 
Logic improves shrimp’s survival rate, weight, and 
growth compared to traditional system. The finding 
implies that using technology, such as IoT and Fuzzy 
Logic, improves the quality and quantity of cultured 
shrimp. In the hardware and software architecture 
design, the proposed system can be scaled horizontally 
or vertically to meet shrimp farmers’ needs with 
multiple ponds on their farms. The proposed system 
is also successful in improving and maintaining water 
parameters. It shows a potential growth in population 
and weight of the shrimps compared to non-IoT 
counterparts. 

Shrimp’s growth length needs further research 
as the research only studies temperature, pH, and 
DO. Other water parameters, such as nitrate, salinity, 
dissolved inorganic nutrients, alkalinity, hardness, 
calcium, magnesium, potassium, chlorophyll-a, 
turbidity, and parameters outside water, also need 
to be studied. In addition, other aspects like density 
and pond size also affect the survivability, weight, 
and length of cultured shrimps. Future research can 
also develop an IoT system that reads parameters not 
included in the research. The results may improve 
and maintain water quality. Different types of Fuzzy 
Logic, like Sugeno, can also be compared with these 
parameters. Then, future research can investigate 
whether these parameters and different Fuzzy Logic 
systems can increase the survivability, weight, and 
length of shrimps.
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APPENDICES

Figure 13 Report Showing Periodic Value and Latest Value as Viewed from Desktop

Figure 14 Report Showing Periodic Value and Latest Value as Viewed from Mobile Device
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Figure 15 Recorded Temperature and Dissolved Oxygen (DO) vs. Aerator

Figure 16 Recorded Temperature and Aerator vs. Heater

Figure 17 Recorded pH vs. Peristaltic Pump
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Table 7 Calibration of Internet of Things (IoT) Sensor vs. Independent Measurement

Water Parameter Date Time IoT Sensor 
Read

Sensor Tools 
Read Difference

Unit of 
Measurement 

(UoM)

Error 
(%)

Accuracy 
(%)

Temperature 03 Apr 2022 
18:45

32,02 32,30 -0,28 °C 0,86 99,14

Temperature 13 Apr 2022 
18:48

32,57 32,40 0,17 °C 0,52 99,48

Temperature 17 Apr 2022 
09:50

31,22 31,10 0,12 °C 0,37 99,63

Temperature 25 Apr 2022 
13:31

32,30 32,00 0,30 °C 0,92 99,08

Temperature 29 Apr 2022 
17:58

32,66 32,00 0,66 °C 2,05 97,95

Average (AVG) 0,94 99,06
Root Mean Square Error (RMSE) 0,36

Mean Absolute Error (MAE) 0,30
Dissolved Oxygen 

(DO)
03 Apr 2022 

18:45
6,75 7,30 -0,55 mg/L 7,48 92,52

Dissolved Oxygen 
(DO)

13 Apr 2022 
18:48

6,66 6,80 -0,14 mg/L 2,00 98,00

Dissolved Oxygen 
(DO)

17 Apr 2022 
09:50

7,52 7,00 0,52 mg/L 7,36 92,64

Dissolved 
Oxygen (DO)

25 Apr 2022 
13:31

6,22 6,30 -0,08 mg/L 1,33 98,67

Dissolved Oxygen 
(DO)

29 Apr 2022 
17:58

6,74 6,80 -0,06 mg/L 0,96 99,04

Average (AVG) 3,83 96,17
Root Mean Square Error (RMSE) 0,34

Mean Absolute Error (MAE) 0,27
Potential of 

Hydrogen (pH)
03 Apr 2022 

18:45
7,60 7,67 -0,08 - 0,98 99,02

Potential of 
Hydrogen (pH)

13 Apr 2022 
18:48

7,36 7,36 0,00 - 0,04 99,96

Potential of 
Hydrogen (pH)

17 Apr 2022 
09:50

8,19 7,71 0,48 - 6,24 93,76

Potential of 
Hydrogen (pH)

25 Apr 2022 
13:31

8,04 7,57 0,47 - 6,26 93,74

Potential of 
Hydrogen (pH)

29 Apr 2022 
17:58

7,50 7,71 -0,21 - 2,74 97,26

Average (AVG) 3,25 96,75
Root Mean Square Error (RMSE) 0,32

Mean Absolute Error (MAE) 0,25
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Figure 18 Research Aquarium (Left) and Control Aquarium (Right)

Figure 19 Shrimp’s Weight Distribution in Gram

Figure 20 Shrimp Length Distribution in Millimeter
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Table 8 Measurement Result Using Ten Samples for Control and Experiment Aquariums

Length (mm) Weight (g)
# Control Experiment Control Experiment
1 20 38 0,25 0,55
2 32 34 0,39 0,49
3 35 28 0,43 0,41
4 35 49 0,43 0,71
5 36 33 0,44 0,48
6 37 35 0,46 0,51
7 39 29 0,48 0,42
8 30 40 0,37 0,58
9 28 30 0,34 0,43
10 28 30 0,34 0,43
x̄ 32,0 34,6 0,393 0,501

Table 9 Statistic Results of Control and Experiment Aquariums

Weight (g) Length (mm)
N=10 Control Experiment Control Experiment
Mean 0,392 0,501 32,000 34,600
Min 0,250 0,410 20,000 28,000
Max 0,480 0,710 39,000 49,000

Std. Dev 0,069 0,093 5,656 6,397
Std. Error Mean 0,022 0,029 1,788 2,023

Table 10 Assessment Results Using %SR, SGR, and Pm Equations

 Control Experiment
In 135 132
Fn 113 119

%SR 84% 90%
Days 30 30

IBW (g) 0,18 0,18
FBW (g) 0,39 0,50

SGR 0,70 1,07
P0 (mm) 25,4 25,4
Pt (mm) 32,0 34,6

Pm 6,6 9,2

Note: %SR: survivability percentage, Fn: final number of juvenile shrimps, In: 
initial number of juvenile shrimps, SGR: Specific Growth Rate, FBW: final 
body weight, IBW: initial body weight, Pm: mean length of shrimp, Pt: average 
length of shrimp at the end of the research, and P0: average length of shrimp at 
the beginning of the research.


