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Abstract - The use of panel data on spatial 
regression has many advantages. However, testing 
the spatial dependency and parameter presumption 
generated in spatial regression of panel data becomes 
inaccurate when applied to regions with large numbers 
of small spatial units. One method of overcoming 
problems of small spatial unit sizes is the bootstrap 
method. The research aimed to combine cross-section 
and time-series panel data. The analysis was performed 
to extract information based on observations modified 
by the influences of space or location, known as spatial 
analysis of panels. The influence of location effects on 
spatial analysis was presented in the form of weighting. 
The research applied the Fast Double Bootstrap 
(FDB) method by modeling poverty rates on Flores 
Island. The results of the Hausman test show the right 
model, which is a random effect. Meanwhile, spatial 
dependency testing concludes spatial dependence 
and poverty modeling in Flores Island, which is more 
likely to be the Spatial Autoregressive Random (SAR) 
model. SAR random effect in modeling value has R2 of 
77,38% and does not meet the normality assumption. 
SAR effect in modeling the FDB approach can explain 
the diversity of poverty rate in the Flores Island with 
88,64% and meets residual normality assumptions. 
The analysis with the FDB approach on spatial panels 
shows better results than the common spatial panels.

Keywords: spatial modeling; fixed effect; random 
effect; Fast Double Bootstrap (FDB)  

I. INTRODUCTION

Panel data is made up of cross-section and time-
series data. The consequence of observing one or more 
variables over a period is time-series data. Meanwhile, 
cross-section data is observed from one or more 
variables taken from multiple sample units or subjects 

over the same time. On panel data, the same individual 
units are observed over time (Schmidt, 2020). 

Then, the spatial analysis of panels is influenced 
by the effects of space or location. The influence or 
effect of location on spatial analysis is presented in the 
form of weighting. The size of proximity depends on 
the knowledge of the size and shape of the observation 
units depicted on the map (Elhorst, 2017).

Spatial econometric models have been 
extensively studied in the past thirty years. They 
have fewer assumptions than classic econometric 
models, and to be precise, spatial econometrics can 
test spatial effects, including spatial dependence and 
heterogeneity. Therefore, spatial econometrics can 
obtain more reasonable and realistic conclusions than 
classic econometrics. Testing the existence of spatial 
dependence in a spatial econometric model has been 
a core issue. In addition, spatial econometric models 
include spatial lag and spatial error models (Liu & 
Yang, 2020). Previous research shows how dependent 
variables in the vicinity of the behavior affect other 
parts of the overall system behavior. Meanwhile, when 
spatial dependence exists in the error term, previous 
research is done on the influence of the error shock 
on neighboring region behavior (Wang & Lam, 
2020). Currently, there are several methods to test 
the existence of spatial dependence in spatial cross-
sectional data models. However, methods are rarely 
presented to test the existence of spatial dependence in 
spatial panel data models.

In spatial regression, the existence of spatial 
dependency is an absolute requirement for the use of 
this analysis. The common methods to test the existence 
of spatial dependence in spatial cross-sectional data 
models include Moran’s I, Lagrange Multiplier (LM), 
Likelihood Ratio (LR), and Rao’s score test. Moran’s 
I test of spatial dependence is assumed to be a non-
alternative hypothesis model. It can test spatial lag 
dependence and spatial error dependence. Therefore, 
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Moran’s I test has been the most commonly used 
(Wang, Yamamoto, & Liu, 2021).

Bootstrap is a method for estimating the 
distribution of an estimator or test statistic by 
resampling one’s data or model estimated from the 
data (Galvao, Parker, & Xiao, 2021). So far, bootstrap 
is widely applied in cross-sectional data, time series, 
and panel data. Under serial and cross-sectional 
correlation, the first-order asymptotic null validity of 
the test is demonstrated. The consistency of the test 
under an alternate hypothesis is also demonstrated 
(Choi & Shin, 2020).

Different bootstrap methods have been 
developed for different types of regression, such as 
residuals bootstrap, block bootstrap (Djogbenou, 
MacKinnon, & Nielsen, 2019), wild bootstrap, and 
wild cluster bootstrap (Canay, Santos, & Shaikh, 2021). 
The block bootstrap is used in time series models and 
deals with panel data models and heteroscedasticity 
(Davidson & Trokić, 2020). Then, the pairs bootstrap 
is used in dynamic or heteroscedastic models in which 
the error term is unknowingly distributed (Lütkepohl 
& Schlaak, 2019). The sub-cluster wild bootstrap is a 
family of new methods that include the ordinary wild 
bootstrap as a limiting instance. The latter technique 
can perform very effectively in pure treatment models, 
where all observations within clusters are either 
treated or not. The most important criterion is that all 
cluster sizes should be comparable (MacKinnon & 
Webb, 2018).

There are several advantages of using 
the bootstrap approach. It does not require any 
assumptions about data distribution, or the term error 
is independent and normally distributed (Roodman, 
Nielsen, MacKinnon, & Webb, 2019). Using the 
bootstrap method in some conditions of regularity 
makes it possible to obtain a more accurate spread of 
the presumption than the usual statistical distribution. 
The bootstrap clusters method is often used in panel 
data, where the bootstrap clusters method works very 
well in practice (Du, Worthington, & Zelenyuk, 2018).

A number of bootstrap procedures are available 
in the literature. The bootstrap procedure considered 
in the research is the wild cluster bootstrap procedure, 
which is an extended version of the wild bootstrap 
proposed in a cluster setting. It is proven that this 
procedure is good to be performed in practice, despite 
the fact that the pairs cluster bootstrap works well in 
principle (MacKinnon, Nielsen, & Webb, 2021). In 
previous research, the comparison of the finite-sample 
size of the bootstrapped t-statistics resulting from 
the pairs cluster bootstrap and wild cluster bootstrap 
indicates that the wild cluster bootstrap performs 
better (MacKinnon & Webb, 2018).

Efron, in 1979, introduced the computational 
bootstrap method as an empirical problem-solving 
alternative. This method is proven more accurate than 
asymptotic methods under small sample conditions, and 
the distribution of parameters is unknown (LaFontaine, 
2021). Then, Beran, in 1988, developed the double 
bootstrap method having better performance than the 

usual bootstrap method  (Mameli, Musio, & Ventura, 
2018). However, the double bootstrap method requires 
longer calculation time because it has to be calculated 
as many as B1 + B1B2 tests statistical values. 

Meanwhile, Fast Double Bootstrap (FDB) 
assumes that the test statistics on the first stage 
bootstrap data set and the second stage bootstrap 
data set test statistics are mutually free. Thus, one 
replication on the bootstrap in the second stage is 
enough for each first-stage bootstrap data set. This 
method produces the same level of accuracy as the 
double bootstrap method but requires a much shorter 
processing time (Davidson & Trokić, 2020).

Spatial bootstrap tests based on residual Ordinary 
Least Square (OLS) are based on Moran’s I statistics to 
test spatial correlations on models. The FDB method 
results in better Moran’s I statistical and asymptotic 
assumption tests (Schuldt et al., 2019). The research 
uses the bootstrap method of the LM test for spatial 
dependency on panel data models with fixed effects. 
The version of the LM test consistency and bootstrap 
must be proven to obtain an asymptotic refinement of 
the LM bootstrap test (Ou, Long, & Li, 2019). The 
wild cluster bootstrap is used to investigate inference 
based on cluster residual for regression models with 
clustered errors. Asymptotic and bootstrap tests, as 
well as confidence intervals, are asymptotically valid 
under certain conditions. As the number of clusters 
approaches infinity, these restrictions limit the rate at 
which cluster sizes can grow. Edgeworth expansions 
for asymptotic and bootstrap test statistics are also 
derived (Djogbenou et al., 2019).

Poverty has been a significant issue in Indonesia 
for the past five years. As a result, for the next five 
years, it will become a strategic development concern. 
The research aims to discover poverty variables and 
measure their impacts to contribute to the eradication 
of poverty. Modeling poverty in Indonesia has two 
problems. To begin with, there is a spatial reliance 
in terms of poverty between regions. Second, certain 
key elements are left out of the empirical model due 
to data limitations. Both factors can cause estimation 
errors in regression parameters. Hence, a fixed 
effect panel spatial error model is used to model the 
poverty rate. It is found that poverty is influenced 
by the unemployment rate and economic well-being 
(Suparman & Ginanjar, 2021).  

In addition, poverty that occurs over time is 
highlighted as part of an effort to develop a more 
accurate model. Previous research has aimed to use 
a geographic data panel analysis to determine the 
factors that influence the percentage of poor people 
in East Java province from 2012 to 2017. The Spatial 
Autoregressive (SAR) model with the concept 
of distance is the best model for this instance. It 
demonstrates that poverty in East Java has a spatial 
influence (Yolanda & Yunitaningtyas, 2019).

East Nusa Tenggara is one of the poorest 
provinces in Indonesia. Data from Statistics Indonesia 
showed the number of poor people in East Nusa 
Tenggara in March 2019 at 1,15 million (21,09%). 
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This number increased compared to March 2018, 
which was 1,14 million people. The problem of 
poverty in East Nusa Tenggara does not only lie in the 
high rates but also the high disparity between regions. 
Comparisons between villages/cities show a large 
disparity. This inequality occurs because of the high 
poverty rate in certain regions. Based on very diverse 
conditions, it causes differences in each region in 
East Nusa Tenggara, so spatial effect problems arise 
because of the effects of geographical factors. Flores 
Island is one of the islands in East Nusa Tenggara, 
consisting of eight districts. It is an archipelago with 
the highest poverty rate in East Nusa Tenggara. The 
problem of poverty has become one of the urgent 
problems in Indonesia. Poverty influences the well-
being of the society on Flores Island (Badan Pusat 
Statistik Provinsi Nusa Tenggara Timur, 2020).

The research uses spatial autoregressive panel 
data models with the FDB approach to cluster poverty 
rate data in Flores Island. Poverty modeling in Flores 
Island has a small sample unit. In addition, the use of 
panel data on time series in 2018-2020 also has not been 
able to produce an adequate number of observations. 
This condition causes issues with testing spatial 
dependency due to small and non-normally distributed 
residual samples. Then, inference statistics are based 
on asymptotic normal distribution assumptions with 
reference to the law of large numbers and the central 
limit theorem in general. Inference statistics will cause 
gaps in confidence and improper statistical tests in a 
small sample. The Maximum Likelihood Estimator 
(MLE) and Ordinary Least Square (OLS) approach 
estimator accuracy are less accurate in small samples 
(Nieuwland et al., 2018). The asymptotic behavior of 
those statistics leads to poor estimation of the actual 
data if the sample size is not quite large. The FDB 
method can be utilized to fix this issue. It is possible to 
obtain a more accurate spread of the presumption FDB 
method than the usual statistical distribution under 
certain conditions of regularity (Du et al., 2018). The 
research aims to identify the procedures for using the 
FDB method on spatial regression with spatial fixed 
effect and random effect. The estimation model of 
the spatial fixed model and random effect is obtained 
through the FDB approach on the poverty rates in 
Flores Island.

II. METHODS

Data used are from Statistics Indonesia of 
East Nusa Tenggara for the 2018−2020 periods. The 
research is performed in the entire district of Flores 
Island. Dependent variables are poverty, while 
independent variables consist of previous Expected 
Years of Schooling (EYS), Gross Regional Domestic 
Product (GRDP), Average Life Expectancy (ALE), 
Regional minimum Wage (RMW), and Unemployment 
Rate (UR). 

Poverty in Flores Island is characterized not 
only by a large number or percentage of people living 

in poverty but also by a wide inequality between 
regions. When comparing districts, there are significant 
differences. This disparity arises because of the high 
poverty rate in some places. Because of the wide range 
of variables in each East Nusa Tenggara location, the 
problem of spatial effects develops due to geographic 
considerations. 

Data are tested using the SAR model with the 
FDB approach. Meanwhile, the analysis step is the 
first stage of determining the spatial weighting matrix 
based on contiguity and normalizing the line to obtain 
the matrix (W). The spatial weighting matrix (W) is 
a key component in defining the proximity of one 
place to another. It is calculated using data about the 
proximity between two areas (neighborhoods). The 
distance or contiguity between two regions can be 
used to generate a spatial weighting matrix (W). The 
spatial weighting matrix takes the following shape in 
Equation (1).
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The Rook Contiguity method is used in the study. 
It has Wij = 1 for regions that overlap sides with areas 
of concern and Wij = 0 for all other regions (Suryowati, 
Bekti, & Faradila, 2018). Weights line standardization 
of Rook Contiguity is shown in Equation (2).

        (2)

Then, choosing the right model between 
fixed and random effects with the Hausman test is 
performed. The modeling of the conformity test is 
conducted using the spatial Hausman test, which aims 
to compare fixed effects and random effects on SAR 
models. This test is done based on the assumption of 
whether the random effect matches the data used or 
not. If it does not match, the estimator of the random 
effect model is inconsistent and can decide to use the 
fixed-effect model (Lee & Yu, 2020). Hausman test 
statistics are shown in Equation (3). It shows  
as the parameter estimator of the random effect model, 

 as the parameter estimator of the fixed effect 
model, and  and  as the matrix of the 
kovarian variant of each estimator.

              (3)

The next step is performing spatial test 
dependencies for original data, namely Moran’s I and 
LM tests. Spatial effects have been tested in spatial 
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panel models before the spatial panel data models 
are established. At present, the most commonly used 
method to test spatial dependence is Moran’s I test. 
The test statistics developed for the cross-section are 
extended to the panel data model. Moran’s I test for 
residual approach is in Equation (4) (Li, Hong, & Peng, 
2019). It has I as Moran’s I test statistic of a spatial 
panel data model,  as the spatial 
weights matrix, ⊗ as the Kronecker product, and  
as the residual. It shows that if the error term does 
not obey the classic distribution or heteroscedasticity, 
Moran’s I test will lapse (Yang, 2018). The bootstrap 
method is an effective way to solve these problems.

        (4)

The LM test is the most often utilized spatial 
autocorrelation specification test. The LM and robust 
LM tests are used, and statistical tests are performed 
to determine the presence of spatial dependency and 
the term autoregressive in the model (Elhorst, 2017). 
LM test in the lag model is in Equations (5) and (6) 
(Elhorst, 2017). Meanwhile, in Equations (7) and (8), 
LM tests error.

        (5)

    (6)

       (7)

    (8)

Next is the spatial autoregressive model of 
panel data (Elhorst, 2017). A spatial regression model 
using panel data with spatial effects is observed in the 
lag of dependent variables (λ=0). It is known as a SAR 
panel without spatial effects on the model error (ρ ≠ 0). 
The spatial autoregressive fixed effect model is shown 
in Equation (9). Meanwhile, the spatial autoregressive 
random effect model is in Equations (10) and (11).

     (9)

    (10)

     (11)

The next stage was the spatial panel test using 
the FDB approach. The research develops bootstrap 
with the FDB method for calculating Moran’s I value 
using panel data with small samples, as shown in 
Equations (12) and (13). Then, there is Moran's I FDB 

p-value in Equation (14). The  is Moran's I p-value 
at the bootstrap of the first stage, as shown in Equation 
(15).

      (12)

     (13)

     (14)

     (15)

The presence of spatial dependencies between 
areas on dependent variables can be tested using 
LM lag tests. LM lags testing for the FDB approach 
is developed from the statistics of the LM lag test of 
Equation (5) on the bootstrap method (Ou et al., 2019). 
The value of FDB LM lags is stated in Equations (16) 
and (17).

   (16)

    (17)

Next, the research calculates the LM lag value 
from the first stage bootstrap data set ( ) and 
obtains the first stage bootstrap p-value ( ). Then, 
the first stage bootstrap data set is resampled again in 
the second stage. The p-value of FDB LM lags can be 
obtained using Equations (18), (19), and (20).

   (18)

    (19)

    (20)

SAR modeling on fixed and random effect 
methods produces residual data sets ( ). Bootstrap 
residual data sets are performed in as many as two 
stages to obtain fast double bootstrap replication 
( ). The model is estimated using the residual 
bootstrap data set from the second stage. As shown in 
Equation (21), the second stage residual bootstrap data 
set estimates  for the spatial fixed effect.

   (21)

The second stage of the residual bootstrap 
data set is utilized to estimate  for spatial random 
effect equations, as shown in Equation (22). The  
that has been obtained on each replication data set is 
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modeled with a SAR model to obtain an estimate of 
the parameters of each replication data set.

   (22)

     (23)

The spatial autoregressive model obtains the 
value of each parameter. The estimator value of the 
spatial lag parameter is obtained for each replication 
through the process of iterating the SAR equation. 
FDB parameter estimated value is shown in Equation 
(24).

     (24)

The estimator value of the spatial lag 
autocorrelation coefficient for each replicated data set 
( ) is obtained through the process of iterating the 
SAR model equations for each replication. Spatial lag 
autocorrelation coefficient presumption values with 
the FDB approach are shown in Equation (25).

      (25)

There are steps in the FDB SAR fixed and 
random effects. A spatial regression data panel with 
spatial fixed effect and random effect is performed to 
obtain an estimate of parameters of  and  using 

the maximum likelihood method. Then, the residual 
is calculated as much as B replication, and residual 
resampling of the first stage is also conducted ( ). 
Next, as many as B replication, residual resampling 
of the second stage ( ) is performed. For each 
replication, calculation of , .  is generated 
using  from fixed and random effects. The last step 
is calculating FDB p-values of  and .

III. RESULTS AND DISCUSSIONS

Spatial pattern analysis is used to see the 
distribution pattern and the relationship between 
variables between regions. In analyzing the spatial 
patterns of poverty levels and the factors that are 
thought to influence poverty levels in the Flores Island, 
the research uses thematic maps. Thematic maps are 
a visualization of data presented in map form. In 
this map, the areas on Flores Island are divided into 
three classes using the Equal Interval method: low, 
medium, and high. Data exploration shows that the 
useful images and information from the data should be 
considered without jumping to conclusions in general.

Figure 1 shows the pattern of poverty distribution 
of eight districts in the Flores Island used in the 
research. Figure 1 explains that during 2018–2020, the 
spatial pattern of poverty levels has been relatively the 
same. The territory with a percentage of poor people in 
the high category includes East Manggarai and Ende 
districts. As for areas with a low percentage of poor 

Figure 1 Thematic Map of Poverty Rates in the Flores Island in 2018-2020
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people, there are East Flores, Sikka, Nagekeo, and 
Ngada districts. Then, the percentage of poor people in 
the moderate category includes West Manggarai and 
Manggarai districts. Among the regions with moderate 
and low percentages of poor population, the areas are 
close together. Hence, there is a spatial dependence 
between these regions.

Spatial modeling of poverty rates in the districts 
of Flores Island is conducted using the cluster of FDB 
approach utilizing residual values and dividing it into 
three clusters. The cluster method used in the panel 
data is based on location and time. Then, the cluster 
based on location is also used. SAR modeling of 
random effect with a cluster of FDB approach on the 
poverty rates in Flores Island results in an estimated 
parameter with 1.000 times repetition.

The first step is conducting the Hausman test to 
identify whether the fixed or random effects are more 
suitable to be used on the model. The test also aims 
to see whether there are random effects in the spatial 
panel data. Then, spatial dependency tests using 
Moran’s I and LM are conducted to identify whether 
there is a dependency on spatial lag or error model.

 Matrix weighting used is Rook Contiguity, 
followed by the Hausman test to produce the selected 
model. From Table 1, Hausman SAR and Spatial Error 
Model (SEM) tests obtain a bigger p-value of than α 
(0,05) or smaller t-value than = 7,815. Thus, 
it is concluded that the random effect model is better 
than the fixed model effect on poverty level modeling 
in Flores Island. Furthermore, testing is carried out 
using a random effect model.

Table 1 The Results of Hausman Test

Test Statistics LM P-Value
LM lag 15,902 6,672x10-5

Robust LM lag 10,036 0,001536
LM error 8,8527 0,003851
Robust LM error 2,4866 0,1148

Moran’s I spatial dependency and LM tests 
are the next steps. Moran’s I tests the spatial effects 
of poverty-level locations on Flores Island. Based 
on Table 2, the LM lag test results in a p-value of 
6,672×10-5 and the LM error test with a p-value of 
0,03851. These results indicate spatial dependencies 
are in the lag model and spatial error panel. The tested 
robust LM lag obtains a p-value of 0,00153 and a 
robust LM error with a p-value of 0,1148. It shows that 
the spatial model of the poverty rate panel in Flores 
Island is an autoregressive spatial model (SAR).

Then, a random effect in the spatial 
autoregressive test is conducted. It results in a 
coefficient of determination (R2) value of 0,7738. 
Therefore, the residual normality assumption of the 
random effect spatial model is not met.

Table 2 LM Value Test in Spatial Regression Model

Test Statistics LM P-Value
LM lag 15,902 6,672x10-5

Robust LM lag 10,036 0,001536
LM error 8,8527 0,003851
Robust LM error 2,4866 0,1148

The next step is testing spatial panels with the 
FDB approach. The first step to model the poverty rate 
in districts of Flores Island with the FDB approach is 
to test spatial dependency using the FDB Moran’s I 
and FDB Lagrange Multiplier (LM) tests. Then, the 
FDB robust LM is performed to identify whether 
spatial dependencies occur on the dependent variables 
in model errors or if there are autoregressive terms 
on SAR and SEM models using α=5%. The spatial 
dependency test for the projected FDB approach is 
shown in Table 3.

Table 3 Spatial Statistical Values Dependency 
on FDB Approaches

Test statistics Values P-Value
Moran’s I 0,3616 0,0272
LM lag 1,3295 0,0101
Robust LM lag 1,0598 0,0085
LM error 1,2458 0,2791
Robust LM error 0,7555 0,7069

Table 3 shows the results of spatial dependency 
testing for the FDB approach. FDB Moran’s I, LM lag 
test with 0,0272 and 0,0101 are smaller than α=0,05. 
The results indicate the spatial dependency on the 
percentage of poverty districts in Flores Island. Then, 
the FDB LM error with a p-value of 0,2791 shows no 
spatial dependency on the panel spatial error model. 
Meanwhile, FDB robust LM lag test obtains a p-value 
of 0,0085 and FDB robust LM error has a p-value of 
0,7069. The results indicate that the spatial model of 
the poverty-level panel in Flores Island is SAR with 
the FDB approach.

The next step is to test the spatial autoregressive 
random effect model with the FDB approach. The 
spatial values of the autoregressive model with the 
FDB approach are shown in Table 4. From Table 4, the 
coefficient of determination (R2) shows that the 88,64% 
of poverty rate in Flores Island can be explained by all 
five independent variables using spatial autoregressive 
random effects of the FDB approach. Then, variables 
that significantly affect the dependent variables in the 
SAR random effect model use α = 5%. It includes 
GRDP and RMW. It is indicated by a smaller p-value 
than α = 5%.
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Table 4 SAR Random Effect Regression Coefficient 
Values with FDB Approach

Variable Coefficient P-value
EYS (X1) 2,0579 0,3438
GRDP (X2) -0,3664 0,0133
ALE (X3) 0,2795 0,7101
RMW (X4) -5,6983 0,0414
UR (X5) -1,0668 0,4217
R-Squared 0,8864

ϕ 0,1224

ρ 0,1600

The significance test for each parameter 
produces two significant variables. So, a good model 
is formed using significant variables. The SAR 
random effect model with the FDB approach obtains 
the following calculation.

Then a Spatial Autoregressive random effect 
model is formed for each location. For example, the 
random effect Spatial Autoregressive (SAR) model for 
the Ende district is as follows.

              

              

From the mentioned model, the poverty rate in 
East Flores and Ende districts has a role of 0,0800% 
in the poverty in Sikka district. Each reduction in the 
percentage of poverty in the two adjacent areas have an 
impact on reducing the percentage of poverty in Sikka 
district by 0,0800%. Then, the residual normality 
assumption is met at a fairly small observation 
measure using the FDB SAR random effect approach. 
The results from the FDB approach lead to better 
results. Moreover, there are improvements in testing 
assumptions of normality. The plot normality of SAR 
random effect parameters with the FDB approach is 
presented in Figure 2. Based on Figure 2, the estimated 
value of parameters obtained by the FDB SAR random 
effect approach with a looping of 1.000 times meets 
the normal distribution (limiting normal distribution).

Figure 2 Normality Plot with Fast Double Bootstrap Spatial Autoregressive Random Effect
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IV. CONCLUSIONS

Analysis of SAR random effect modeling of 
poverty rates in Flores Island with the FDB approach 
produces a more accurate distribution of presumption 
and effective value than the usual SAR random 
effect method. The random effect in spatial modeling 
autoregressive model with the FDB approach results 
in a higher R-squared value of 88,64% of the original 
spatial autoregressive random effect model, namely 
R-squared 77,38%. It shows that cluster in FDB of 
Spatial Autoregressive (SAR) random effect can 
explain the diversity of poverty rates in Flores Island 
by 88,64% using five variables under the research. In 
addition, the normality assumption is met at a fairly 
small observation size through the FDB SAR random 
effect approach. The results reveal that independent 
variables providing significant effects on poverty 
rates in Flores Island are gross regional domestic 
product (PDRB) and Regional Minimum Wage 
(RMW). Spatial testing for the FDB approach leads to 
better results. In addition, there are improvements in 
assumptions of small samples. 

The limitations in the research are more focused 
on examining the use of FDB in spatial regression of 
panel data with spatial random and fixed effects. It 
obtains a spatial random effect estimation model with 
an FDP approach to the problem of poverty levels in 
Flores Island, East Nusa Tenggara Province. Then, 
it compares the more effective results of using the 
FDP method. In future research, spatial dependency 
statistical tests must be developed with an FDB 
approach that considers the existence of outlier data. 
Then, it needs to be developed with a Bayesian 
approach. The Bayesian approach will accommodate 
the problem of not fulfilling the normal distribution 
and small sample size.
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