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Abstract - The research described a model 
formulation of COVID-19 using a dynamic system 
of Ordinary Differential Equation (ODE) which 
involved four population systems (susceptible, 
exposed, infectious, and recovered). Then, the 
research analyzed the direction of the equilibrium, 
Disease Free Equilibrium (DFE), and Endemic 
Equilibrium (EE). The treatment and vaccination were 
the control functions applied to the dynamical system 
modeling of COVID-19. The research was done 
by determining dimensionless number R0 or Basic 
Reproduction Number and applying optimal control 
into the dynamical system using the Pontryagin 
Minimum Principle. Numerical calculations were 
also performed to illustrate and compare the graph 
of the dynamical system with and without a control 
function. From the results, there is a reduction in the 
number of susceptible and infected populations. It 
indicates that giving vaccines to susceptible populations 
and treating infected populations affect the number of 
susceptible and infected populations. It also means that 
this control can reduce the spread of the virus.

Keywords: dynamical modeling, optimal control, 
infected population, cost of vaccination, treatment, 
COVID-19  

I. INTRODUCTION

The instability of economic growth becomes a 
serious discussion for many companies in the world, 
especially manufacturing or service company. Because 
of that situation, the company needs to anticipate it 
by maintaining its operation. Many ways can be done 
by the company to survive and maintain its continuity 
of business operations. One of the ways is closely 

monitoring productivity and quality of products.
In recent years, the use of dynamical systems in 

biology has shown significant changes in mathematics 
and biosciences (Brauer & Castillo-Chavez, 2013). 
This dynamical system uses the optimal control laws 
to look for optimization of functional objectives for 
a certain period and find the optimum control of the 
dynamical system. The use of this optimum control is 
expected to be seen in the graphic. Later, it will show 
the difference between a dynamical system that uses 
and does not use control.

At the end of 2019, WHO was informed by the 
Chinese government about several cases of pneumonia 
with unfamiliar etiology. As an emerging business hub 
of China, Wuhan experienced an outbreak of a novel 
coronavirus that killed more than eighteen hundred 
and infected over seventy thousand people within 
the first fifty days of the epidemic. The outbreak was 
initiated from the Hunan seafood market in Wuhan, 
China and rapidly infected more than 50 people. The 
frequently sold animals at the Hunan seafood market 
were bats, frogs, snakes, birds, marmots, and rabbits 
(Wang, Horby, Hayden, & Gao, 2020).

This virus is reported to be a member of the 
b-group of coronaviruses. The novel virus is named 
Wuhan coronavirus or 2019 novel coronavirus (2019-
nCov) by Chinese researchers. The International 
Committee on Taxonomy of Viruses (ICTV) mentions 
the virus as SARS-CoV-2 and the disease as COVID-19 
(Shereen, Khan, Kazmi, Bashir, & Siddique, 2020).

The source of origin and transmission is 
important to determine and develop preventive 
strategies to contain the infection. In the case of 
SARS-CoV, the previous research initially focuses 
on raccoon dogs and palm civets as key reservoirs of 
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infection. However, only the isolated samples from the 
civets at the food market show positive results for viral 
RNA detection. It suggests that the civet palm might 
be the secondary host (Li, Chen, & Huang, 2020). In 
another previous research, the samples are healthy 
people in Hongkong, and the molecular assessment 
shows 2,5% of the frequency rate of antibodies 
against SARS-coronavirus. These indications suggest 
that SARS-coronavirus may have been circulating in 
humans before causing the outbreak in 2003 (Zheng et 
al., 2004). Later on, Rhinolophus bats are also found 
to have anti-SARS-CoV antibodies suggesting the bats 
as a source of viral replication (Wang & Hu, 2013). 

It is necessary to know that to avoid coronavirus 
infection, people need to maintain a distance between 
sick people at least 2 m or more. Until now, there is no 
research that states coronavirus can be transmitted by 
air. The virus can spread easily through small droplets 
from the nose or mouth of infected people when they 
sneeze or cough. Moreover, the droplets from infected 
people can land on objects or surfaces and are touched 
by healthy persons who further touch their eyes, nose, 
or mouth (Annas, Pratama, Rifandi, Sanusi, & Side, 
2020). 

The research applies a fixed time and free 
endpoint for optimal control. The purpose is to predict 
the dynamic population of susceptible, exposed, 
infected, and recovered people for a certain time 
using the dynamical system of Ordinary Differential 
Equation (ODE) modeling and the effect of vaccination 
and treatment as a control in the model. The reason to 
conduct the research is that the dynamical modeling 
system of ODE is suitable to describe the characteristic 
of the spread of contagious disease in a certain 
population.
                      

II. METHODS

The compartmental model simplifies a 
mathematical modeling of infectious diseases. The 
population is assigned to compartments with labels or 
classes. For example, the research applies Susceptible, 
Infectious, or Recovered (S, I, or R). People may 
progress between compartments. The order of the 
labels or class usually shows the flow patterns 
between the compartment, for example, SEIS means 
susceptible, exposed, infectious, and susceptible again 
(Krishna & Prakash, 2020).

The dynamical modeling is most often run 
with ordinary differential equations (which are 
deterministic). However, it can also be used with 
a stochastic (random) framework. The framework 
is more realistic but more complicated to analyze. 
The model also tries to predict things such as how a 
disease spreads, how much the total infected number 
is, or how long the duration of an epidemic is. It also 
estimates various epidemiological parameters, such 
as the reproductive number. Then, it can show how 
different public health interventions may affect the 
outcome of the epidemic, for example, it indicates the 

most efficient technique for issuing a limited number 
of vaccines in a given population (Krishna & Prakash, 
2020).

A classic epidemiological model to study the 
dynamics of an infectious disease is the Susceptible 
(S) – Exposed (E) – Infectious (I) – Recovered (R) 
model. This SEIR model establishes the most recent 
epidemiological data of the COVID-19 outbreak in 
China. The transmission rate, β, controls the spread rate, 
representing the probability of transmitting disease 
between a susceptible and an infectious individual. 
Meanwhile, the incubation rate, γ, is the rate of latent 
individuals becoming symptomatic (the average 
incubation duration is 1/ γ). Then, the probability of 
recovery, θ, is the average rate of recovery and infected 
populations (Krishna & Prakash, 2020).

The classic SEIR equation assumes a constant 
Susceptible (S) of population size with constant birth 
and death rate across all compartments. In the actual 
situation, this population is dynamic. There will be a 
large number of people moving in and out of each city 
and epidemic-associated deaths (Yang et al., 2020).

In the research, there are several stages. First, 
the research divides the total population into four 
compartments or classes: S for susceptible population, 
E for latent or exposed population, I for infected 
population, and R for recovered population. The 
flowchart diagram for the compartments can be seen 
in Figure 1.

Figure 1 Flowchart Diagram of COVID-19

Second, the Basic Reproduction Number 
(R0) is determined, and the system equilibrium is 
analyzed. Third, the research forms the optimal 
control using Pontryagin minimum principle with 
the objective function of minimizing the susceptible, 
infected population (compartment), and value (cost) 
of vaccine and treatment. Fourth, numerical analysis 
of the optimal control is calculated with GNU Octave 
software (Eaton, Bateman, Hauberg, & Wehbring, 
2021) and using the forward-backward sweep of the 
fourth-order Runge Kutta method. Forward of fourth-
order Runge Kutta method is for solving the state in 
Equation (6), and backward in fourth-order Runge 
Kutta method is for adjoint variable in Equation (9) 
(Anita, Arnăutu, & Capasso, 2011).
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III. RESULTS AND DISCUSSIONS

Dynamical modeling of coronavirus spread is 
based on Figure 1.

       (1)

With initial condition S(0) > 0, E(0) > 0, I(0) > 
0, R(0) > 0

This SEIR dynamical system model in 
Equation (1) is based on Yang et al. (2020). Then, it 
is modified by giving the terms of natural death rate 
(μ), death rate caused by infection (δ), and source of 
susceptible rate  (rNσ). The (rNσ) is source rate of 
susceptible population, μ is parameter of natural death 
rate, and γ is parameter of transmissions rate from 
exposed individuals in becoming infected individuals. 
Moreover, θ is the parameter of recovery rate from 
infection to recovered, δ is the parameter of death rate 
caused by infection of the virus, and

   

is function of suspected individual moving to the 
exposed compartment with parameter rate (β). The 
rate of changed population of susceptible, exposed, 
infected, and recovered represent S, E, I, R respectively. 

To analyze the equilibrium point, the research 
needs to calculate and determine Basic Reproduction 
Number (R0), Disease Free Equilibrium (DFE), and 
Endemic Equilibrium (EE). In here, R0 is defined as 
the expected number of secondary infections produced 
by a single infection in a completely susceptible 
population. Basically, R0 is used to determine the 
spread level of the disease. One of the most important 
concerns about infectious diseases is their ability to 
invade a population. The Basic Reproduction Number, 
R0, is a measure of the potential for disease spread in a 
population and is inarguably one of the foremost and 
most valuable ideas that mathematical thinking has 
brought to epidemic theory (Hattaf & Dutta, 2020). 
It represents the average number of secondary cases 
generated by an infected individual if it is introduced 
into a susceptible population with no immunity to the 
disease in the absence of interventions to control the 
infection. 

If it is R0 < 1, on average, an infected individual 
produces less than one newly infected individual over 

the course of his/her infection period. In this case, the 
infection may die out in the long run. Conversely, if it is 
R0 < 1, each infected individual produces, on average, 
more than one new infection. The infection will spread 
in a population. A large value of R0 may indicate the 
possibility of a major epidemic (Delamater, Street, 
Leslie, Yang, & Jacobsen, 2019).

The idea of R0 is developed by Van den Driessche 
(2017) and Kumar and Kumar (2018). Basically, R0 is 
used to determine the spread level of the disease. It 
can be determined using the next-generation matrix. 
In epidemiology, the next generation matrix is used 
to derive the Basic Reproduction Number for a 
compartmental model of the spread of infectious 
diseases (Roberts & Heesterbeek, 2013). In population 
dynamics, it is used to compute the Basic Reproduction 
Number for a structured population model. It is also 
used in multi-type branching models for analogous 
computations.

Let Fi(x) define as the rate of new infection and 
Vi(x) as the rate of individual displacement, then it 
defines:

            (2)

         (3)

      (4)

           (5)

     (6)

The eigenvalue of ( )( )θδµγµ
γβ

σ +++
=−

N
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with           (7)

Then:       (8)

DFE state is defined as the point at which no 
disease is present in the population. This DFE is the 
average number of cases of an infectious disease arising 
by transmission from a single infected individual in 
a population that has not previously encountered the 
disease. In other words, it is R0. DFE state can be 
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achieved if R0 is less than one (R0 < 1).

Theorem 1. If it is R0 < 1, the disease-free equilibrium 
point of system (1) is locally asymptotically stable. 
Meanwhile, if it is R0 > 1, L0 is unstable. 

Proof:

Define   L0 = (S0, E0, I0, R0)    with ,

E0 = 0,  I0 = 0, R0 = 0         (9)

Jacobian (J) matrix for L0 =
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Then, the characteristic equation derived from 
Equation (10) is as follows:

( ) ( ) 021
22 =+++ aa λλµλ                        (11)

Where, 

 γθδµ +++= 21a                                                    (12)

  ( )( )( )02 1 Ra −+++= δµθγµ                                            (13)

There are two eigenvalues from Equation (11), 
which have negative real parts, that is (λ + μ)2 = 0 . It 
results in λ1 = λ1 = -μ. So, it needs to consider the other 
two eigenvalues (λ2 + α1λ + α2) = 0 .

According to the Routh-Hurwitz criteria 
(Murray, 2011), the eigenvalues of Equation (11) have 
negative real parts if and only if it is α1, α2 > 0 . Using 
the equation in α2  eigenvalues of Equation (11) will 
be negative if it is R0 < 1. In control system theory, the 
Routh–Hurwitz stability criterion is a mathematical 
test that is a necessary and sufficient condition for 
the stability of a Linear Time Invariant (LTI) control 
system. The Routh test is an efficient recursive 
algorithm that English mathematician Edward John 
Routh proposed in 1876 to determine whether all the 
roots of the characteristic polynomial of a linear system 
had negative real parts. German mathematician, Adolf 
Hurwitz, independently proposed in 1895 to arrange 
the polynomial coefficients into a square matrix, called 
the Hurwitz matrix, and showed that the polynomial 
was stable if and only if the sequence of determinants 
of its principal submatrices were all positive. The 
two procedures are equivalent with the Routh test 
providing a more efficient way to compute the 
Hurwitz determinants than computing them directly. 
A polynomial satisfying the Routh–Hurwitz criterion 

is called a Hurwitz polynomial (Anagnost & Desoer, 
1989).

EE state is when the disease cannot be totally 
eradicated but remains in the population. For the 
disease to persist in the population, the susceptible 
class, exposed or latent class, infected class, and 
recovered class must not be zero at equilibrium state. 
In other words, if L* = (S8, E*, I*, R*) is the endemic 
equilibrium state, it is L* = (S8, E*, I*, R*) ≠ (0, 0, 0, 0).

Theorem 2. If it is R0 < 1, the endemic equilibrium point 
of system in Equation (1) is locally asymptotically 
stable. Meanwhile, if it is R0 < 1, L*is unstable.

Proof

Define:

),,,( */**** RIESL =                                                         (14)
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Then the characteristic equationderived from 
Equation (19) is as follows:

( )( ) 032
2

1
3 =++++ ccc λλλµλ                 (20)

Where,

µθγδβ 3*
1 ++++= Ic                       (21)

µθγδβµ 2)(3 *2
2 ++++= Ic           (22)

( ) ( )µθδµγµ ++++−= )1( 03 Rc           (23)

There is one of the eigenvalues from Equation 
(20), which has negative real parts  λ1 = -μ. Then, the 
research needs to consider the other eigenvalue. The 
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eigenvalues in Equation (20) also have negative real 
parts if and only if it is c1, c2, c3 > 0; c1, c2 > c3. Using 
the equation in c3 eigenvalues of Equation (5) will be 
negative if it is R0 >1.

( ) 032
2

1
3 =+++ ccc λλλ                       (24)

In vector calculus, the Jacobian matrix of a 
vector-valued function in several variables is the 
matrix of all its first-order partial derivatives. When 
this matrix is square, that is, when the function takes 
the same number of variables as input as the number 
of vector components of its output, its determinant 
is referred to as the Jacobian determinant. Both the 
matrix and the determinant (if it is applicable) are 
often referred to simply as the Jacobian in literature 
(Resendis-Antonio, 2013).

Then, optimal control modeling is a common 
paradigm employed in many fields of science and 
engineering. Techniques from control theory are used 
to find the optimal controls that cause the model to 
behave in a manner that minimizes or maximizes a user-
defined performance criterion. To control the outbreak 
of coronavirus infection, the research applies optimal 
control method. It aims to minimize susceptible (S) 
and infected (I) populations, and the value (cost) of 
vaccination and treatment are represented by u1 and u2, 
respectively (Pontryagin, 1962).

Define objective function:

∫ ++=
ft

t
tu

T
tu

T
tIuuJ

0

)(
2

)(
2

)(min),( 2
2

12
1

1
21

          
(25)

 Subject to   
                                                                

with initial condition

  (26)
Define:

  (27)

In here, T1 and T2 represent the weight constant 
for control variables of  μ1 and μ2,  respectively. Then, 
the terms

 )(
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mean the cost function for vaccine and treatment, 
respectively. The purpose is to find the control function 
of μ1(t) and μ2(t) with J(u1,u2)=min{(u1,u2);u1,u2ϵU} 
subjecting to Equation (6), and the control set is 
given as follows. That U={(u1,u2)|u1(t)} is Lebesque 
measurable on {[0,T],0 ≤ ui(t)(≤1, i =1,2)}.

For the solution, the optimal control should exist 
for non-negative initial conditions: positive bounded 
solutions to the system in Equation (6) and bounded 
Lebesgue measurable control. There exists an optimal 
control which minimizes J(u1,u2) if the following 
conditions are satisfied. First, F is a non-empty set, 
and non-empty set makes sure that there is a solution. 
Second, the control set, U, must be closed and convex.

The right-hand side of the state system 
is continuous and is bounded above by a linear 
combination of the control and state. It can be written 
as a linear function of U with coefficients defined by 
the time and the state. The integrand of the objective 
function is convex on U.

A controllability matrix of the system is 
needed to stabilize the system. In addition, solutions 
to an optimal control problem may not be obtained 
if the system concerned is not able to be controlled. 
Thus, it needs to analyze the control of the system. 
Controllability can be analyzed by forming a control 
matrix and determining the number of ranks of the 
matrix. Then, it define the dynamical model of the 
system as follows.

   
                                   (28)

            
The nonlinear controllability matrix is developed 

from intuitive control problem examples (Whalen, 
Brennan, Sauer, & Schiff, 2015). The controllability 
matrix is a mapping constructed from an input function 
and its higher-order Lie brackets. The Lie bracket is 
an algebraic operation on two vector fields f(x), g(x) ϵ 
ℜᵐ that creates a third vector field ℑ(x). With g as the 
input control vector u ϵ ℜᵐ, it defines an embedding 
in ℜᵐ that maps the input to states. For a nonlinear 
system, the research replaces Ax(t) in Equation (28) 
by a nonlinear vector field ANZ(x(t)), take the input 
function as g = Bu(t) in Equation (28), and create Lie 
bracket with respect to the nonlinear vector field f(x 
(t))=ANZ(x(t)). The Lie bracket is defined as follows.

                                                               (29)

That  is the adjoint operator, and the 
superscripts represent the order of the Lie bracket. 
With formal definitions of the input function in 
Equation (27) and its higher Lie brackets in Equation 
(29) from 1 to n, where n is the order of the system 
matrix ANZ(x(t)), the nonlinear controllability matrix is 
defined as follows.
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( ) ( )[ ]gadgadgQ m
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After calculation using Maple software 
programming, it is known that the rank of controllability 
matrix equals to four. It means that the dynamical 
system of the model is controllable. Then, the 
formulation of optimal control is applied to find the 
optimal solution. After that, the research defines the 
Hamiltonian function of the control as follows.
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(31)

Here, 1λ , 3λ , 3λ , 4λ  are adjoint variables that satisfy:

                    (32)

With terminal condition:

0)()()()( 4321 ==== ffff tttt λλλλ    (33)

These adjoint variables will maximize or 
minimize the state variable with respect to the state 
function. Then the optimal variables of control are as 
follows.

   (34)

with  *
11 uu =

   (35)

with  *
22 uu =

Then, *
1u  can be rewritten as:

    (36)

and *
2u

        (37)

Numerical results and analysis of the optimal 
control are performed with GNU Octave software 
version 5.2.0 (Eaton et al., 2021). It uses a forward-
backward sweep of the fourth-order Runge Kutta 
method. The forward sweep method is for solving the 
state in Equation (6), and backward sweep method 
solves adjoint variable in Equation (9) (Anita et al., 
2011). 

GNU Octave is a high-level language primarily 
intended for numerical computations. It is typically 
used for solving linear and nonlinear equations, 
numerical linear algebra, and statistical analysis and 
performing other numerical experiments. It may also 
be used as a batch-oriented language for automated 
data processing (Eaton et al., 2021).

Octave is free software. It means that everyone 
is free to use and redistribute it on certain conditions. 
Octave is not, however, in the public domain. It 

Table 1 Parameter Data of Equations (1) and (6).

Parameter Description     Values Reference
β  Transmission coefficient  0,7873 Kan et al. (2005)
Nσ Population equal with S(0)  258.639 Al Farizi and Harmawan (2020)
γ Rate from latent to infected 3 to 7 Kan et al. (2005)
δ Mortality rate due to infection 0,154 Kan et al. (2005)
θ Rate from infected to recovery 0,84 Kan et al. (2005)
r Source of susceptible rate 0,0452 Fitted
μ Natural death rate 0,0016 Fitted

S(0) Initial value of S(t) 258.639 Al Farizi and Harmawan (2020)
E(0) Initial value of E(t) 33.672 Al Farizi and Harmawan (2020)
I(0) Initial value of I(t) 16.006 Al Farizi and Harmawan (2020)
R(0) Initial value of R(t) 3.518 Al Farizi and Harmawan (2020)
T1 Weight constant of U1 1 Fitted
T2 Weight constant of U2 1 Fitted
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is copyrighted, and there are restrictions on its 
distribution, but the restrictions are designed to ensure 
that others will have the same freedom to use and 
redistribute Octave. The precise conditions can be 
found in the GNU General Public License that comes 
with Octave (Eaton et al., 2021).

The parameter data of the system in Equations 
(1) and (6) are presented in Table 1. Then, the terminal 
condition is 4,3,2,1,0)( == it fiλ . The research puts 
200 days ( 200=ft ) as the timeline for the dynamical 
system.

Based on Table 1, R0 which is simulated in the 
dynamical system of Equation (1) is 22.339. It means 
that through the calculation, the value of R0 equals 
22.339. Then, the value of the parameter data of 
susceptible rate (r) and parameter data of natural death 
rate (μ) are fitted or adjusted. After the data of r and 
μ are fitted and adjusted, the simulation model can be 
run using GNU Octave software programming.

Figure 2 Dynamic of Susceptible Population

Figure 3 Dynamic of Exposed Population

Figure 4 Dynamic of Infected Population

Figure 5 Dynamic of Recovered Population

Figure 6 Three-Dimensional Graph of Dynamic Population 
of S, I, R without Control
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After numerical calculations, the research can 
see be in the simulation graph in Figures 2 to 5 that 
the control function of u1 and u2 (vaccination and 
treatment) are applied to the system. Then, the control 
function can significantly decrease the population 
of susceptible (see Figure 2). It also minimizes the 
population of infected (see Figure 4).

Figure 6 describes the three-dimensional (3D) 
phase between the number of susceptible, infectious, 
and recovered people as the variable. This 3D phase 
can also be described as a graph of parametric equation 
between susceptible, infectious, and recovered.

The terms of ₋u1(t)S(t) and u1(t)S(t) in the 
system in Equation (6) means that there is a reduction 
in the rate of change of the susceptible population by 
u1(t)S(t) and the infected population as much as u2(t)
I(t). Using GNU Octave software programming, it is 
known that S(3)=170.100, u1(3)=0,9999; I(3)=28.820; 
u2(3)=0,9998 with t = 3 months so that S(3)×u1(3) 
=170.082,99 and I(3)×u2(3)=28.814,236. It means 
when the rate of the susceptible population at t = 3 
months (S(3)) must be reduced by 170.083 individuals 
(rounding up from 170.082,99). Then, when the rate 
of the infected population at t= 3 months, (I(3)) must 
be reduced by 28.815 individuals (rounding up from 
28.814,236) simultaneously. For a further description, 
in the third month, it shows the target to vaccinate 
170.083 susceptible individuals and treat 28.815 
infected individuals simultaneously. The susceptible, 
exposed, and infected population will decrease rather 
than not being vaccinated and treated when it is done. 
These vaccination and treatments should continue for 
200 days with notes that the amount of u1(t)S(t) and 
u2(t)I(t)  will vary depending on time (t). It depends 
on numerical calculations of the dynamical system in 
Equations (6) and (9). It also notes that the value of u1 
and u2 is constrained to 0 < u1<1, 0 < u2<1.

Figure 7 Dynamics of Infected Population with and 
without Controls

The depiction of the use of the control in the 
research can be seen in Figure 7. The use of this 
control is expected to reduce the infected population 
at the specified time, ft . As seen in Figure 7, the blue 

line is the equation of infected individual versus time 
without control and reaches final state at I1(tf). Then, 
the black line is the equation of infected individual 
versus time with control and reaches final state at I2(tf). 
It also shows the value of the final state )()( 12 ff tItI <
. It means that the control can decrease the final state. 
The type of this optimal control problem is fixed time 
with free endpoint and state and control constraint.

IV. CONCLUSIONS

The use of u1 and u2 as controls applied to the 
dynamical modeling of coronavirus spread can be seen 
in the numerical simulation in Figures 2, 3, 4, and 5. 
There is a reduction in the number of susceptible and 
infected populations. It means that giving vaccines 
to susceptible populations and treating infected 
populations have an impact or effect on reducing the 
number of the susceptible population and infected 
population. It also implies that this control can reduce 
the spread of the virus. In the end, the use of control 
measures is expected to advise the public health 
authorities or government to optimize the cost or 
value of vaccines and treatments to handle cases of 
COVID-19 outbreak. 

The research is limited to four population 
systems (susceptible, exposed, infectious, and 
recovered) and uses only the population in Indonesia. 
For further research, it can add more population 
systems, such as quarantined populations. Future 
research can also divide the infectious population into 
two classes, like the early-stage infection and chronic 
infection population, to describe more detail about the 
COVID-19 outbreak.
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