
*Corresponding Author

P-ISSN: 2087-1244
E-ISSN: 2476-907X

89

ComTech: Computer, Mathematics and Engineering Applications, 11(2), December 2020, 89-95
DOI: 10.21512/comtech.v11i2.6453

Implementation of Microservices Architecture
on E-Commerce Web Service

Juan Andrew Suthendra1* and Magdalena Ariance Ineke Pakereng2
1,2Department of Informatics Engineering, Faculty of Information Technology, Satya Wacana Christian University

Jln. Diponegoro 52-60, Salatiga 50711, Indonesia
1juanandrew9912@gmail.com; 2ineke.pakereng@uksw.edu

Received: 15th May 2020/ Revised: 13th August 2020/ Accepted: 18th August 2020

How to Cite: Suthendra, J. A., & Pakereng, M. A. I. (2020). Implementation of Microservices Architecture on
E-Commerce Web Service. ComTech: Computer, Mathematics and Engineering Applications, 11(2), 89-95. https://doi.

org/10.21512/comtech.v11i2.6453

Abstract - The research aimed to make e-commerce
web services using a microservices architecture. Web service
was built using Representational State Transfer Protocol
(REST) with Hypertext Transfer Protocol (HTTP) method
and JavaScript Object Notation (JSON) response format.
Meanwhile, the microservices architecture was developed
using Domain-driven Design (DDD) approach. The research
began by analyzing e-commerce business processes and was
modeled using Unified Modeling Language (UML) based
on business process analysis. Next, the bounded context
was used to make a small responsible service for a function.
The Programming language used to make the system was
Go programming language with Go-kit tool and apply
database-per-service pattern for data management. The
system also applied the concept of containerization using
Docker as the container platform and using API Gateway
to manage each endpoint. Last, the evaluation process was
carried out using the Postman application by testing each
endpoint based on the white-box testing method. Based on
the results of the evaluation process, the e-commerce web
service can work as expected. The results also show that
the system has a high level of resilience. It means that the
system has a low level of dependencies between services
and adapts to future changes.

Keywords: microservices architecture, e-commerce web
service

I.	 INTRODUCTION

E-commerce is used to sell or buy products on online
services or over the Internet. Nowadays, e-commerce is
showing significant growth, thanks to the help of a cashless
payment trend and the global digital revolution. Asia leads
in the first place in the aspect of digitalization, including
e-commerce. Indonesia recorded more than 20% sales
growth on e-commerce transactions in 2017 (Kinda, 2019).

According to Khan (2016), e-commerce has
benefits for customers such as time-saving, convenience,
product variations, comfort, and ease of getting the product

information. Meanwhile, for the sellers, the benefits are
reducing the operational cost, the maintenance cost, and
the procurement cost, increasing revenue, developing the
company image, and raising customer loyalty. To support
the significant growth of e-commerce and maximize its
benefits, e-commerce must provide services that have high
availability and are easy to maintain and develop.

Web service is a standardized way to propagate
communication between client and server. There are two
common protocols used in making web services that are
Representational State Transfer Protocol (REST) and Simple
Object Access Protocol (SOAP) (Tihomirovs & Grabis,
2016). REST can use JavaScript Object Notation (JSON)
or Extensible Markup Language (XML) as the data format.
Meanwhile, SOAP can only use XML as the data format.
Advantages of REST over SOAP are better performance,
more simplicity, fast execution, greater scalability, more
loose coupling, and lower memory consumption. On the
other hand, SOAP is more secure and reliable. SOAP is best
suited for long-haul working projects due to having more
focus on security and reliability, such as banking, financial,
and telecommunication services. Then, REST is for projects
with big scale because of focusing more on simplicity and
performance, such as web chats and mobile services (Soni
& Ranga, 2019).

In the past, a system is usually built under monolithic
architecture. Monolithic architecture is described as
a single-tiered software application in which the user
interface and data access code are combined into a single
program from a single platform (Venugopal, 2017). Over
time, the system will continue to experience changes due
to changes or growth in the business processes that cause
the application to become more complex and bigger.
Monolithic architecture weakness is the ability to adapt
when the system changes its requirement, especially in
managing its code complexity and code maintainability. It
will be a problem in the distribution process due to its high
dependency levels (Munawar & Hodijah, 2018). If one part
of the code is changed, it will affect the other parts of the
code. So, the other parts of the code must also be changed.

To solve that problem, the system will be built
using a microservices architecture. Microservices are small

90 ComTech: Computer, Mathematics and Engineering Applications, Vol. 11 No. 2 December 2020, 89-95

autonomous services that work together (Newman, 2015).
Microservices split a large service into smaller services.
Each service has duties and operates independently. Hence,
it causes a low level of dependencies between services (loose
coupling). The low level of dependencies between services
makes it easier for the system to adapt to changes (Munawar
& Hodijah, 2018). It will also be easier for the developer to
modify some services and deploy them without changing
the whole system. One way to make the services has a
low dependency level is by reducing the communication
between services (Newman, 2015). Communication
between services is only done through communication
between Application Programming Interface (API)
(Richardson, 2018). Splitting the services also makes
microservices architecture have a faster response time
compared to monolithic architecture (Budi, 2018). Another
advantage of microservices architecture lies in system
resilience. System resilience is the ability to withstand
error or infrastructure damage. The system can still work
even if there are interrupted services (Suryotrisongko,
2017). However, to guarantee the resilience of the system,
microservices must be well monitored. All kinds of logging
and operational data must be collected consciously and
consistently (Singhal, Sakthivel, & Raj, 2019). The logged
data can help developers to find problems occurring in the
system.

Domain-Driven Design (DDD) is an approach to
develop a microservices infrastructure. It focuses on the
domain, which includes concepts, relationships between
domains, and existing business processes (Steinegger,
Giessler, Hippchen, & Abeck, 2017). It uses bounded
context to identify services on the microservice architecture.
Business processes should be grouped according to their
function. Each group will become the bounded context of
the system (Newman, 2015). Then, bounded context turns
into small services in the microservices architecture.

From the explanation mentioned, the goal of the
research is to make an e-commerce web service using a
microservices architecture. The system is expected to have
a high level of resilience and adapt to changes in the future.

II.	 METHODS

Figure 1 Research Method

The used research method can be seen in Figure
1. The first step is functional analysis. It is the process of
identifying and analyzing business processes. Then, the
data collection is conducted to obtain the features that will
be provided in the system. Each feature has a function and
an actor who can access it.

The second step is system modeling. The system is
modeled according to the result of functional analysis. It
is modeled using the Unified Modeling Language (UML).
The result shows the interaction between actors and the
system in the form of a use case diagram.

The third step is system design. This stage is carried
out by designing the microservices. The results describe
the used technology and the system configuration. The
system is built using the Go programming language with
the Go-Kit tool. Go has a better server-side in Input/
Output (I/O) performance than Java, Node, and PHP
(Peabody, n.d). There is another toolkit that can be used to
build microservices architecture in Go, called Go-Micro.
Both Go-Kit and Go-Micro provides features like service
discovery, load balancing, and others. The difference
between Go-Kit and Go-Micro lies in the opinion and
expectation about the infrastructure and architecture.
Next, the database is designed using a database-per-
service pattern. This pattern allows selecting a suitable
database for each service, maintains the data needed by
related services, and prevents other services to access the
database directly. The data transaction between services
can only occur through API communications. The system
also applies the containerization concept using Docker as
the container platform. The concept of containerization
provides advantages in program design, monitoring, and
implementation (Singhal et al., 2019).

Microservices should be packaged in the container
image. Then, the scaling is done based on changing the
container number instance, and the performance will be
much faster than running on a regular Virtual Machine
(VM) (Venugopal, 2017). API Gateway is used to manage
each endpoint. It is an API management tool between a
client and a system. It acts as the only way to access the
system and helps in the process of securing, configuring,
and encapsulating the internal structure of the system (Zhao,
Jing, & Jiang, 2018).

The fourth step is implementation. In this stage,
the system is made following the technology that has been
determined. The database is the first part to be created and
implemented using the database-per-service pattern. Each
service has a database. After creating databases, the web
service is coded. Go-Kit tools are laid out in three layers:
transport layer, endpoint layer, and service layer. Request
enters the system in the transport layer and flows down to the
service layer. Meanwhile, responses take the reverse course.
The transport layer determines the used transport protocol
in the system. This system uses HTTP as the transport
protocol. The endpoint layer is the system controller. This
layer controls the action flow of the system. The service
layer holds the business process of the system. After the
code is done, all of the services need to be registered into
API Gateway. Then, the API Gateway is configured. The
last step is to package the system in the Docker container.

The final step is system evaluation. The system is
evaluated to ensure that the system can work as expected
and have a good resilience level. Every system endpoint
is tested using the white box testing method. Then, test
results are compared with expectations. If the results and
expectations of the test are similar, the endpoint will be

91Implementation of Microservices..... (Juan Andrew Suthendra; Magdalena Ariance Ineke Pakereng)

declared successful. If it is not, the endpoint will be fixed
and tested again. If all endpoints work as expected, the next
step is to test the resilience of the system. The test simulates
system failure in real scenarios. Some service nodes are
shut down, and the nodes that are still functioning will be
tested. The system will pass the resilience test if the alive
service nodes can perform as expected. The system will be
successful if it passes both tests.

III.	 RESULTS AND DISCUSSIONS

The functional analysis for produced data that are
related to the features is needed in the system. Based on the
functional analysis result, there are two actors in the system:
customer and merchant. The customer is a member of the
system that has a role as a buyer. Meanwhile, the merchant
has a role as a seller. The covered business process by the
system is the transaction between customer and merchant,
including the shipping process. However, the payment
process is not covered in the system. The payment system
uses a third-party payment processor. The payment process
uses a third-party payment processor to ensure the security
and automation of the payment process. Table 1 shows the
result of functional analysis. It shows the activity of each
actor in the system.

Based on the data in Table 1, a use case diagram is
designed. The use case diagram illustrates the interaction
between the system and the actors. Figure 2 shows a use
case diagram regarding the interaction between the actors
and the system. In this system, customer can manage their
account, order product, and view a list of products and
shipping information. Moreover, the merchant can manage
their account, shipping information, orders, and product
information.

After creating the use case diagram, the researchers
determine the bounded context in the system based on
the business process. It is a logical constraint that has
the responsibility for implementing a business process in
the system. The DDD approach uses bounded context to
determine services in the microservices architecture. Table
2 shows the bounded contexts in the system. The system has
four services: account, inventory, order, and shipping.

Table 1 Result of Functional Analysis

Actor Activity
Customer &
Merchant

Create an account and manage account
information

Customer
Order products
See a list of products
See shipping information

Merchant

Sell products
Manage products information
Manage order information
Manage delivery information

Table 2 Bounded Context

Bounded Context Description

Account
This service is responsible for managing
account data, registering a new account,
and handling the users’ login process.

Inventory This service is responsible for managing
product information.

Order This service is responsible for managing
order information.

Shipping This service is responsible for managing
delivery information.

Account service is responsible for managing
customer and merchant account. A merchant account can
only be created if the user already has a customer account.
Customer account management manages personal data
and addresses. The stored personal data by the system are
account ID, email, password, name, telephone number,
gender, date of birth, and account creation date. An account
can store multiple shipping addresses. Moreover, merchant
account management saves the store data. The system keeps
merchant data such as merchant ID, account ID, merchant
name, address, and credit.

Figure 2 Use Case Diagram

92 ComTech: Computer, Mathematics and Engineering Applications, Vol. 11 No. 2 December 2020, 89-95

Inventory service is responsible for managing
product data from each merchant. Products data that are
stored by the system are product ID, merchant ID, product
name, stock, description, and price. Next, the order service
manages the orders. Customers can place orders. Meanwhile,
merchants can receive and process the orders. In managing
the order data, data will be placed in two different tables.
The first table stores order data such as order ID, customer
ID, merchant ID, shipping address, order status, order date,
and last update date. Meanwhile, the second table saves
the details of each order. The data are order ID, product
ID, product amount, unit price, and total price. Then, the
shipping service is responsible for managing shipping data.
The data are shipping ID order ID, courier, shipping date,
and tracking ID.

Table 3 shows the endpoints and their function in
the system. Web service is built using REST architecture.
REST architecture consists of five Hypertext Transfer
Protocol (HTTP) methods that can be used. These methods
are POST, GET, PATCH, DELETE, and PUT. POST creates
a new resource. GET retrieves a specific resource. PATCH
is used to update a specific resource. DELETE removes a
specific resource, and PUT replaces all specific resources.

Each endpoint is registered to an API Gateway using
Kong. It is configured by adding a circuit breaker. The
circuit breaker will limit the total requests that can be made
to the system in a period. When the number of requests has
reached a specified limit, the circuit breaker will activate,
prevent the request from getting to endpoint services, and

return an error message. This method can protect the system
from the chaos that can occur when a service fails to fulfill
the user request.

Figure 3 is the design of microservices architecture.
The system is built using REST with HTTP. The response
given from every request is sent in the form of JSON. The
used database by all services is PostgreSQL. Then, the
system is equipped with a security layer to protect data and
communication processes between users and the system.
Password is protected using the BCrypt hashing algorithm.
BCrypt is an encryption algorithm based on the blowfish
encryption algorithm. It meets three security criteria that
are believed to be sufficient to protect a system. It also has
the second preimage-resistance, sufficient salt capacity (in
cryptography) to protect from pre-computational attack,
and adaptable cost (Provos & Mazieres, 1999).

JSON Web Token (JWT) is used when users want
to access the endpoints in the system. JWT will ensure that
data will only be accessed by certain accounts by comparing
the token claims.

Next, the evaluation of the system is done using the
white-box testing method. Table 4 shows the result of the
system evaluation. The code column is the endpoint that
will be tested. The code refers to Table 3. The examination
column is the action given to the system. Meanwhile, the
expectation column is the expected result when the users
access the endpoint. The reality column is the test result
obtained. Then, the result column shows whether the action
is successfully conducted or not.

Table 3 The Created Endpoints

Service Code Endpoints Method Function

Account

A1 /signup POST Create customer account
A2 /signin POST Sign in to the existing account
A3 /profile/{id} GET Show customer data
A4 /address/{user_id} GET Show list of customer addresses
A5 /address/id/{id} GET Show information about selected address
A6 /address POST Add new customer address
A7 /address PATCH Change selected customer address
A8 /address/{id} DELETE Delete selected customer address
A9 /merchant/{user_id} GET Show merchant data
A10 /merchant POST Create a merchant account
A11 /merchant PATCH Change merchant data

Inventory

I1 /product POST Add new product
I2 /product PATCH Change the selected product data
I3 /product/{merchant_id} GET Show list of product sold by a merchant
I4 /product/id/{id} GET Show product information
I5 /product/stock PATCH Change the stock amount of a product

Order

O1 /order POST Order products
O2 /order/status PATCH Change order status
O3 /order/{user_id} GET Show list of orders made by an account
O4 /order/{merchant_id} GET Show list of orders made to a merchant
O5 /order/id/{id} GET Show data about an order

Shipping
S1 /shipping POST Create new shipping information
S2 /shipping/{order_id} GET Show shipping information of an order

93Implementation of Microservices..... (Juan Andrew Suthendra; Magdalena Ariance Ineke Pakereng)

Figure 3 Microservice Architecture

Table 4 The Result of System Evaluation

Code Examination Expectation Reality Result

A1

Users create a new customer
account and fill in the required
information.

A new account is created, the
password is encrypted, and all
information is saved on the
database.

A new account is created, the
password is encrypted, and all
information is saved on the
database.

Success

Users create a new customer
account and do not fill in the
required information.

The system returns an error
message.

The system returns an error
message. Success

A2

Users input the correct email and
password combination. Users log in to the system. Users log in to the system. Success

Users input incorrect email and
password combination.

System returns an error
message indicating the incorrect
combination of email and
password.

System returns an error message
indicating the incorrect combination
of email and password.

Success

A3
Customers see their personal
information. The account ID is sent
to the system.

The system receives their account
ID and shows users’ information.

The system receives their account
ID and shows users’ information. Success

A4
Customers see their address list.
The account ID is sent to the
system.

The system receives their account
ID and shows the saved address on
their account.

The system receives their account
id and shows the saved address on
their account.

Success

A5
Customers see their address
information. The address ID is sent
to the system.

The system receives address ID
and shows address information.

The system receives address ID and
shows address information. Success

A6 Customers register a new address to
their account.

The system saves the address
information to the database.

The system saves the address
information to the database. Success

A7 Customers select one address and
change the address information.

System changes the selected
address information

System changes the selected address
information Success

A8 Customers select one address and
delete it.

The selected address is deleted
from the database.

The selected address is deleted from
the database. Success

A9

Customers have a merchant account
and want to see their merchant
information.

The system shows the merchant
information.

The system shows the merchant
information. Success

Customers do not have a merchant
account. They want to see their
merchant information.

The system returns an error
message.

The system returns an error
message. Success

94 ComTech: Computer, Mathematics and Engineering Applications, Vol. 11 No. 2 December 2020, 89-95

Last, the evaluation process of the system resilience
is carried out by simulating the system failure. Several
service nodes are shut down randomly. Service nodes that
are still functioning are tested. The result of the test shows
the service nodes that do not experience the interference can
work normally.

IV.	 CONCLUSIONS

Based on the results of the evaluation process,
the e-commerce web service can work as expected. The
evaluation results also show that the system has a high
level of resilience. It means that the system has a low level
of dependencies between services and adapts to future
changes. Docker can help developers to develop a system.
It helps the developers in the development, implementation,
and deployment process. Docker will package all of the used
libraries and dependencies in the system into a package.
It will simplify the process of deploying and distributing
the system. In making a system using microservices
architecture, the whole system is broken down into many

A10 Users create a new merchant
account.

A new merchant account is created,
and all information is saved on the
database.

A new merchant account is created,
and all information is saved on the
database.

Success

A11 Merchant changes their
information.

Merchant’s information is changed,
and all information is saved on the
database.

Merchant’s information is changed,
and all information is saved on the
database.

Success

I1 Merchant adds a new product to the
showcase.

Product is added to the merchant’s
showcase.

Product is added to the merchant’s
showcase. Success

I2 Merchant selects a product and
changes its information.

The system changes the selected
product information.

The system changes the selected
product information. Success

I3 Customers see merchant showcase The system shows the selected
merchant showcase.

The system shows the selected
merchant showcase. Success

I4 Customers select a product sold by
the merchant.

The system shows the selected
product information.

The system shows the selected
product information. Success

I5 Merchant changes the stock amount
of a product.

The system changes the amount of
stock on the selected product.

The system changes the amount of
stock on the selected product. Success

O1 The customer makes an order.
The order information is saved in
the database. The amount of stock
of a product ordered is reduced.

The order information is saved in
the database. The amount of stock
of a product ordered is reduced.

Success

O2 Order status is changed.

The system changes the status
of an order. If the order status is
canceled, the quantity of an ordered
product will return to the product
stock amount.

The system changes the status of an
order. If the order status is canceled,
the quantity of an ordered product
will return to the product stock
amount.

Success

O3 Customers see their orders. The system shows a list of orders
made by a customer.

The system shows a list of orders
made by a customer. Success

O4 Merchants see the order made by
customers to their products.

The system shows a list of orders
made by a customer to a merchant.

The system shows a list of orders
made by a customer to a merchant. Success

O5 Customers or merchants see order
details. The system shows the order details. The system shows the order details Success

S1 Merchant adds shipping
information to an order.

Shipping information of an order is
added to the database.

Shipping information of an order is
added to the database. Success

S2 Customers see the shipping
information of an order.

The system shows the shipping
information of an order.

The system shows the shipping
information of an order. Success

smaller services. Then, several factors must be considered
in splitting the service, such as service dependencies and
service communication. Microservices must be well
designed. Otherwise, the development of the system will be
difficult.

The advantages of using microservices architecture in
developing a system are the flexibility and maintainability of
the system. The system performance can also be maximized
because it can be built using different programming
languages and databases. Changes and improvements in
service will not affect the works of other services as long
as the service is not dependent on each other. It is essential
because business processes will continue to grow, and the
system must adapt to the changes.

For future research, some parts can be improved.
First, apply the concept of Event Sourcing. This concept
will help the data consistency and record system activities.
Second, use the Command Query Responsibility
Segregation (CQRS) pattern in performing a query that
involves many services. Third, use newer and more secure
password encryption techniques such as Argon2.

95Implementation of Microservices..... (Juan Andrew Suthendra; Magdalena Ariance Ineke Pakereng)

REFERENCES

Budi, C. S. (2018). Implementasi arsitektur microservices
pada backend comrades (Doctoral dissertation).
Universitas Komputer Indonesia

Khan, A. G. (2016). Electronic commerce: A study on
benefits and challenges in an emerging economy.
Global Journal of Management and Business
Research: B Economics and Commerce, 16(1), 19-
22.

Kinda, M. T. (2019). E-commerce as a potential new engine
for growth in Asia. International Monetary Fund.

Munawar, G., & Hodijah, A. (2018). Analisis model
arsitektur microservice pada sistem informasi DPLK.
Sinkron: Jurnal dan Penelitian Teknik Informatika,
3(1), 232-238.

Newman, S. (2015). Building microservices: Designing
fine-grained systems. USA: O’Reilly Media, Inc.

Peabody, B. (n.d). Server-side I/O performance: Node vs.
PHP vs. Java vs. Go. Retrieved August 13th 2020
from https://www.toptal.com/back-end/server-side-
io-performance-node-php-java-go

Provos, N., & Mazieres, D. (1999). A future-adaptable
password scheme. In USENIX Annual Technical
Conference, FREENIX Track (pp. 81-91).

Richardson, C. (2018). Microservices patterns. Manning.

Singhal, N., Sakthivel, U., & Raj, P. (2019). Selection
mechanism of micro-services orchestration vs.
choreography. International Journal of Web &
Semantic Technology (IJWesT), 10(1), 1-13.

Soni, A., & Ranga, V. (2019). API features individualizing
of web services: REST and SOAP. International
Journal of Innovative Technology and Exploring
Engineering, 8(9S), 664-671.

Steinegger, R. H., Giessler, P., Hippchen, B., & Abeck,
S. (2017). Overview of a domain-driven design
approach to build microservice-based applications.
In The Third International Conference on Advances
and Trends in Software Engineering (SOFTENG
2017).

Suryotrisongko, H. (2017). Arsitektur microservice untuk
resiliensi sistem informasi. Jurnal SISFO: Inspirasi
Profesional Sistem Informasi, 6(2), 235-250.

Tihomirovs, J., & Grabis, J. (2016). Comparison of SOAP
and REST based web services using software
evaluation metrics. Information Technology and
Management Science, 19(1), 92-97.

Venugopal, M. V. L. N. (2017). Containerized microservices
architecture. International Journal of Engineering
And Computer Science, 6(11), 23199-23208.

Zhao, J. T., Jing, S. Y., & Jiang, L. Z. (2018). Management
of API gateway based on micro-service architecture.
Journal of Physics: Conference Series, 1087, 1-8.

