
*Corresponding Author

P-ISSN: 2087-1244
E-ISSN: 2476-907X

75

ComTech: Computer, Mathematics and Engineering Applications, 11(2), December 2020, 75-81
DOI: 10.21512/comtech.v11i2.6452

Finding Biomarkers from a High-Dimensional 
Imbalanced Dataset Using the Hybrid Method of Random 

Undersampling and Lasso

Masithoh Yessi Rochayani1*, Umu Sa’adah2, and Ani Budi Astuti3 
1-3Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya

Jln. Veteran, Malang 65145, Indonesia
1yessirochayani@student.ub.ac.id; 2u.saadah@ub.ac.id; 3ani_budi@ub.ac.id

Received: 14th May 2020/ Revised: 13th August 2020/ Accepted: 18th August 2020 

How to Cite: Rochayani, M. Y., Sa’adah, U., & Astuti, A. B. (2020). Finding Biomarkers from a High-Dimensional 
Imbalanced Dataset Using the Hybrid Method of Random Undersampling and Lasso. ComTech: Computer, Mathematics 

and Engineering Applications, 11(2), 75-81. https://doi.org/10.21512/comtech.v11i2.6452

Abstract - The research conducted undersampling 
and gene selection as a starting point for cancer classification 
in gene expression datasets with a high-dimensional and 
imbalanced class. It investigated whether implementing 
undersampling before gene selection gave better results 
than without implementing undersampling. The used 
undersampling method was Random Undersampling (RUS), 
and for gene selection, it was Lasso. Then, the selected genes 
based on theory were validated. To explore the effectiveness 
of applying RUS before gene selection, the researchers used 
two gene expression datasets. Both of the datasets consisted 
of two classes, 1.545 observations and 10.935 genes, but 
had a different imbalance ratio. The results show that the 
proposed gene selection methods, namely Lasso and RUS 
+ Lasso, can produce several important biomarkers, and the 
obtained model has high accuracy.  However, the model is 
complicated since it involves too many genes. It also finds 
that undersampling is not affected when it is implemented 
in a less imbalanced class. Meanwhile, when the dataset 
is highly imbalanced, undersampling can remove a lot of 
information from the majority class. Nevertheless, the 
effectiveness of undersampling remains unclear. Simulation 
studies can be carried out in the next research to investigate 
when undersampling should be implemented.

Keywords: biomarkers, high-dimensional imbalanced 
dataset, Random Undersampling (RUS), Lasso hybrid 
method

I.	 INTRODUCTION

Biomarkers are the indicators that provide essential 
information about the presence of disease (Taj, Rehman, 
& Bajwa, 2020). For example, body temperature is a 
biomarker of fever, and blood pressure is a biomarker of 
hypertension or hypotension. Doctors can diagnose several 
diseases using a blood test or urine test because both of 

them contain biomarkers. Other biomarkers are genes that 
have been used for cancer diagnosis.

There are so many genes in the human body, and 
researchers still have not found all of the human genes 
(Salzberg, 2018). Microarray technology is a tool to study 
the expression of many genes at once. Microarray gene 
expression data have features (genes) that very much 
exceeds the number of observations, which are so-called 
high-dimensional data. This type of data can contain 
hundreds  of observations and tens of thousands of genes 
(Hastie, Tibshirani, & Wainwright, 2015). Therefore, 
finding biomarkers from high-dimensional gene expression 
data requires a particular method.

Classifying gene expression is important for 
studying gene characteristics in various diseases such as 
cancers. However, traditional classification methods cannot 
work well in high-dimensional data. In general, traditional 
classification methods require a smaller sample size than 
the number of variables. One of the traditional methods 
is logistic regression called Generalized Linear Model 
(GLM) by utilizing the logit function to model data with the 
categorical response variable. However, logistic regression 
will produce biased estimators using high-dimensional data 
(Sur & Candès, 2019).

Selecting predictor variables at the preprocessing 
stage is a strategy for modeling high-dimensional data. In 
general, there are three approaches to set variables, namely 
the filter, wrapper, and embedded methods. Among these 
approaches, embedded is more efficient in computing 
and does not overfit (Guyon & Elisseeff, 2003). One 
of the methods included in the embedded approach is 
regularization. Regularization uses a constraint or a penalty 
in optimizing the objective function of the regression 
model. The ability of the regularization method to shrink the 
regression coefficients toward zero makes this method can 
be used for variables selection. Least Absolute Shrinkage 
and Selection Operator (Lasso) proposed by Tibshirani 
(1996) is one of the regularization methods. The Lasso 
penalty function is defined by Equation (1).
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 				       (1)

The   is the regression coefficient, 
and ρ represents the number of predictor variables. Lasso 
outperforms other variable selection methods, such as 
Classification and Regression Tree (CART) and Random 
Forest, in selecting true variables in psychiatric data (Lu & 
Petkova, 2014).

Moreover, modeling gene expression data faces 
high-dimensional challenges and cases of imbalanced 
class. Strategies for addressing imbalanced class include 
oversampling to increase the number of instances in the 
minority classes or undersampling to remove instances 
from the majority classes. However, for high-dimensional 
data with thousands of features, the use of the oversampling 
method, such as Synthetic Minority Over-Sampling 
Technique (SMOTE), will cause the data size to be much 
bigger and take more time to execute (Kaur & Gosain, 2018). 
Therefore, the undersampling method is more appropriate 
to use for high-dimensional data with imbalanced class. 
The addition of undersampling before variable selection in 
high-dimensional data with an imbalanced class can give 
better results than that without undersampling (Yin & Gai, 
2015). The most widely used undersampling method for 
balancing binary data is Random Undersampling (RUS). It 
removes some observations in the majority class randomly. 
This simplicity makes RUS have a low computational cost, 
compared to Tomek-link or other undersampling methods. 
Hence, RUS is suitable to be applied to huge data. 

Various studies have used regularization methods for 
gene selection in gene expression data, including Algamal 
and Lee (2015) with adaptive Lasso, Kang, Huo, Xin, Tian, 
and Yu (2019) with relaxed Lasso, Wu, Jiang, Shen, and Yang 
(2018) with L ½ penalty and Zhang, Wang, Sun, Zurada, 
and Pal (2019) with group Lasso. However, those studies 
do not pay attention to the imbalanced class. Classification 
with an imbalanced class causes the model to be more fit 
for the majority class. Those studies also only evaluate the 
goodness of the prediction model and do not validate the 
selected genes obtained based on oncogenomics theory. 
Validation based on the theory needs to be done to ascertain 
whether the obtained model can be justified in theory or not.

Based on the mentioned explanation, the researchers 
investigate whether implementing undersampling before 
gene selection gives different selected genes from not 
implementing undersampling. If that is the case, it is to 
see which method is better at providing the selected genes 
and model. The used undersampling method is RUS, 
and for gene selection, it is Lasso. The researchers also 
investigate whether the genes that appear at the early stage 
of the selection process are the genes for the most important 
biomarkers of the disease. Then, the researchers validate the 
selected genes based on the oncogenomics theory.

II.	 METHODS

Two gene expression datasets with different 
imbalance ratios are used to understand the effectiveness 
of implementing undersampling before gene selection. 
The first dataset is OVA_Breast, which compares the gene 
expression in breast tumor tissues and other tumor tissues 
(colon, endometrium, kidney, lung, omentum, ovary, 
prostate, and uterus). The second dataset is OVA_Ovary, 

which compares the gene expression in ovarian tumor 
tissues and other tumor tissues. Another reason for using 
these two datasets is that both cancers are the deadliest 
cancer for women.

These datasets are downloaded from openml.org. 
These datasets consist of 1.545 observations and 10.935 
genes as the predictors. In the OVA_Breast dataset, the 
classes are labeled by “Breast”, representing the class of 
breast tumor tissues, and “Other” for other tumor tissues. 
Meanwhile, in the OVA_Ovary dataset, the classes are 
labeled “Ovary” and “Other”. 

Next, the researchers apply RUS in the majority 
class to balance the two classes. The researchers conduct 
gene selection using Lasso in original data and the reduced 
data, which have been standardized. Since these datasets 
have a binary response, the used model is binary logistic 
regression. Binary logistic regression is a logistic regression 
model that the response variable has two categories denoted 
by 1 for “success” and 0 for “failure”. The general model 
of binary logistic regression with ρ predictor variables is 
defined by Equation (2).

 		     (2)

Then, π(xi) is the probability of success, β0 is the 
intercept, βj is the logistic regression coefficient, and xij 
is the jth predictor variable. Using logit transformation, 
Equation (2) can be stated as a linear form. It is shown in 
Equation (3).

 

        
	                 			      (3)

Logistic regression parameters are estimated using 
Maximum Likelihood Estimation (MLE). For the binary 
logistic regression model, the log-likelihood function is in 
Equation (4).

 

 				       (4)

In Equation (4), multiplying the log-likelihood 
function by  is intended so that the number of samples does 

not affect the estimation results. Then, maximizing the log-
likelihood function is equivalent to minimizing the negative 
log-likelihood. The negative log-likelihood is the objective 
function of logistic regression. The negative log-likelihood 
of binary logistic regression is defined by Equation (5).

 

 				       (5)
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Therefore, the estimated parameter of binary logistic 
regression ( ) can be expressed by Equation (6).

 			      (6)

The solution to the optimization problem in 
Equation (6) is obtained by setting the partial derivative 
of the objective function of , which is equal to 
zero. However, this function cannot be derived exactly, so a 
numerical approximation is needed. Before using numerical 
methods to estimate the coefficients, the negative log-
likelihood function is expressed in quadratic approximation 
(second-order Taylor polynomial), expressed by Equation 
(7).

						         (7)

The   is 
estimated response,   is the jth  

weight,   is evaluated at the current 

parameters,   is constant, and  is the current 
estimated parameter (Friedman, Hastie, & Tibshirani, 
2010).

Coefficients of Lasso  are the solution to 
the constrained optimization problem. It can be seen in 
Equation (8).

 ,
subject to  .				       (8)

Using the Lagrange multiplier, the constrained 
optimization problem in Equation (8) is transformed into 
an optimization problem without constraint in Equation (9).

 		     (9)

The λ > 0 is the regularization parameter. A 
framework called pathwise coordinate descent is proposed 
to obtain the coefficient of Lasso (Friedman, Hastie, & 
Holger, 2007; Friedman, Hastie, & Tibshirani, 2010; 
Mazumder, Friedman, & Hastie, 2011; Tibshirani et al., 
2012). This framework consists of three nested loops: 
outer loop, middle loop, and inner loop. In the outer loop, 
the regularization parameter λ is updated by decreasing 
its value. In the middle loop, the quadratic approximation 
in Equation (7) is updated using the current parameters. 
Finally, the coordinate descent algorithm is run in the inner 
loop to solve Equation (9).

The regularization parameter (λ) in the first iteration 
is the largest λ. The λ makes all regression coefficients equal 
to zero. As the iteration index increases, the λ decreases, 
and the number of nonzero coefficients increases. Since 
the number of nonzero coefficients of Lasso depends on 
the λ, the optimum λ has to be estimated. The commonly 
used method to estimate the optimum λ is K-fold Cross-
Validation (CV). The estimated optimum λ produces the 
smallest average binomial deviance (Hastie et al., 2015), 

as follows:

 			   	  (10)
Where,

 			    (11)

Then, binomial deviance (Dev) is defined as:

 			    (12)

The 0i denotes the value of the observation, and ei is 
for the estimated value of the model.

The steps of modeling using RUS + Lasso are 
presented in Figure 1. First, the original dataset is split 
into the training set and the testing set. After that, random 
undersampling is conducted on the majority class of the 
training set, and Lasso is applied to select relevant genes. 
The best regularization parameter (λ) is estimated using 
cross-validation. The best λ has the smallest binomial 
deviance in cross-validation. The model is then generated 
from the best λ. Finally, validation is conducted using the 
testing set.

Figure 1  Flowchart of Gene Selection 
and Modeling Using RUS + Lasso

III.	 RESULTS AND DISCUSSIONS

The researchers divide the datasets into a training set 
and a testing set with a ratio of 80%:20%. Gene selection is 
conducted only in training data. Therefore, the number of 
observations for gene selection is 1.236. In the OVA_Breast 
dataset, there are 274 observations in the “Breast” class 
and 962 observations in the “Other” class. Meanwhile, for 
the OVA_Ovary dataset, there are 163 observations of the 
“Ovary” class and 1.073 observations of the “Other” class. 
Undersampling is performed using RUS to balance the two 
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classes. The ratio of 274:274 is obtained in the OVA_Breast 
dataset and 163:163 in the OVA_Ovary dataset.

In the OVA_Breast dataset, gene selection using 
Lasso is conducted on the original training set and the 
reduced training set. The glmnet package on R (Friedman et 
al., 2010) limits the smallest  λ  or λ in the last iteration to be 
0,01 times the initial λ. Then, the iteration index is denoted 
by m, in which it is m = 1, 2, ..., M, and λM = 0,01 × λ0 . The 
ratio that decreases λ can be expressed by Equation (13).

 					      (13)

The λ in the mth iteration is λm = λ0r
m. Since  r is 

a positive real number less than 1, the λ decreases as the 
iteration index (m) increases. In both Lasso and RUS + 
Lasso methods, 100 iterations are used. Since λ100 = λ0r

100 
and λM = 0,01 × λ0, it is  = 0,955.

Figure 2 presents the plot of the regularization 
parameter and the number of nonzero coefficients for each 
iteration. In Figure 2(a), the plotted λ value is λ of glmnet 
output multiplied by n, where n is the number of observations. 
It is done because glmnet is computed by multiplying the 
negative log-likelihood term by , but the penalty term is 

not multiplied. Therefore, to get the actual λ, the λ from 
glmnet output is multiplied by n. Multiplying  λ glmnet by 
n causes the actual λ from the Lasso method to be greater 
than λ from the RUS + Lasso method because the sample is 
reduced after applying RUS.

(a)

(b)

Figure 2 The Plot of Regularization Parameter and the 
Number of Nonzero Coefficients for Each Iteration in 

OVA_Breast Dataset

Figure 2 The Plot of Regularization Parameter and 
the Number of Nonzero Coefficients for Each Iteration in 
OVA_Breast Dataset 

In Figure 2(a), the λ decreases following the 
geometric sequence with the exponential decay curve. 
Meanwhile, Figure 2(b) shows that the number of selected 
genes increases as the index of iteration increases. From the 
two pictures, the number of selected genes increases as the 
index of iteration increases.

Next, the researchers investigate which genes are 
selected at the beginning of the iteration. In the Lasso 
method, the first selected gene is 209604_s_at, which 
is selected in the second iteration. In the fourth iteration, 
the gene 218502_s_at is selected. The third selected gene, 
namely 210239_at, starts to appear on the thirteenth 
iteration. On the other hand, the application of RUS + Lasso 
produces two selected genes in the second iteration. Those 
genes are 209604_s_at and 218502_s_at. The third gene is 
selected in the sixth iteration, which is 210239_at. 

The first three genes of RUS + Lasso are the same 
as Lasso. It may happen because the dataset is not highly 
imbalanced. The ratio of class “Breast” and class “Other” 
is 274:962. The number of observations in the majority 
class is about 3,5 times the number of observations in the 
minority class, which is not too highly imbalanced.

Based on Figure 1, the number of selected genes 
depends on the regularization parameter (λ). Therefore, to 
obtain the best model, the optimum λ has to be estimated. 
The 10-fold CV results show that the optimum regularization 
parameter of Lasso is λ = 11,48 that produced 106 genes. 
Meanwhile, the optimum λ of the RUS + Lasso is λ = 5,35, 
producing 102 genes. To explore which method gives a 
better model, the researchers perform a model evaluation 
using the training set and the testing set. The result of the 
model evaluation is shown in Table 1.

Table 1 The Accuracy of the Proposed Methods 
on the OVA_Breast Dataset

Method
Accuracy

Training Testing
Lasso 98,71% 97,09%
RUS + Lasso 98,91% 96,44%

In Table 1, RUS + Lasso has slightly higher accuracy 
than Lasso on the training set. However, on the testing set, 
the accuracy of Lasso is slightly higher. The slight difference 
in accuracy indicates that the two methods produce a model 
that can predict new data well.

Before validating the selected based on theory, the 
genes of probeset ID are converted to gene symbols. Since 
there are so many genes that are produced at optimum λ, the 
researchers only validate the first three selected genes. In 
the OVA_Breast dataset, Lasso and RUS + Lasso have the 
same first three selected genes: 209604_s_at, 218502_s_
at, and 210239_at. The results of the conversion of these 
probeset ID to gene symbols are in Table 2.

GATA binding protein 3 (GATA3), which is the 
first gene selected, has been widely studied by scientists, 
especially in breast cancer. It is very useful as a marker for 
metastatic breast carcinoma (Cimino-mathews et al., 2013) 
and a relatively high sensitive marker for breast carcinomas 
(Shaoxian et al., 2017). A high level of GATA3 expression 
indicates a slow rate of cell proliferation and predicts better 
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survival in breast cancer patients. As the tumor grade 
increases, the expression of GATA3 decreases (Shaoxian et 
al., 2017). A low level of GATA3 expression is associated 
with poor prognosis in breast cancer patients (Liu, Shi, 
Wilkerson, & Lin, 2012).

Table 2 The First Three Selected Genes
in OVA_Breast Dataset

Probeset ID Gene symbol
209604_s_at GATA3
218502_s_at TRPS1
210239_at IRX5

Trichorhinophalangeal syndrome 1 (TRPS1) is also 
widely studied by scientists. The decrease in expression of 
TRPS1 can prevent mitosis of cancer cells, thereby reducing 
cancer growth (Witwicki et al., 2018). Thus, the strong 
expression of TRPS1 can be used as a good prognostic 
marker in breast cancer. Moreover, Iroquois homeobox 5 
(IRX5) is the target of therapy in several cancers including 
breast cancer (Myrthue et al., 2008).

In the OVA_Ovary dataset, the researchers also use 
100 iterations, so the ratio of λ is equal to 0,955. Figure 
3 shows the plot of the regularization parameter and the 
number of nonzero coefficients for each iteration in the 
OVA_Ovary dataset. Then, Figure 3(a) presents the plot of 
lambda for each iteration. It can be seen that a decrease in 
the regularization parameter forms an exponential decay 
curve.

The researchers also investigate the selected genes in 
the initial iterations. In the OVA_Ovary dataset, Lasso and 
RUS+Lasso provide different selected genes. In the second 
iteration of Lasso, two selected genes appear. Those are 
209569_x_at and 219873_at. Then, the third gene is selected 
in the fourth iteration, which is 206067_s_at. Meanwhile, in 
RUS + Lasso, genes with probeset ID of 1556051_a_at and 
204069_at are selected in the second iteration. Then, in the 
fifth iteration, two genes are selected again. Those genes are 
209569_x_at and 209678_s_at. 

The differences in the result of the selected genes in 
the OVA_Ovary dataset may occur due to too many samples 
in the majority class being removed. In this dataset, the 
majority class has 1.073 observations, while the minority 
class has 163 observations. In other words, the number 
of observations in the majority class is about 6,6 times 
the number of observations in the minority class. When 
class balancing is performed, in the majority class, 910 
observations are removed. It causes a lot of information to 
be discarded.

Since the selected genes at the beginning of the 
iteration are different between Lasso and RUS + Lasso, it 
is very interesting to see which method provides the best 
model at optimum λ. The results of 10-fold CV show that 
the optimum λ of Lasso is λ = 20,91 producing 71 genes, 
and RUS + Lasso is λ = 6,43 with 97 genes. Table 3 presents 
the accuracy of the model obtained from Lasso and RUS + 
Lasso. 

Based on Table 3, the accuracy of the model 
produced by RUS+Lasso is higher than Lasso in the training 
set. Meanwhile, Lasso in the testing set has higher accuracy. 
Nevertheless, the accuracy of the two methods is still high.

Both OVA_Breast and OVA_Ovary data show that 
Lasso is slightly better than RUS + Lasso for the testing set. 

It suggests that the use of undersampling is less effective 
for these two data sets. Dal Pozzolo, Caelen, and Bontempi 
(2015) stated that the factors affecting the effectiveness of 
undersampling are the degree of imbalance and separation 
of the two classes. The most effective condition for 
undersampling occurs when the two classes are not too 
imbalanced, and the class conditions are not well separated.

Furthermore, the researchers perform theoretical 
validation on the selected genes at the beginning of 
iterations of the OVA_Ovary dataset. Table 4 presents 
the first three selected genes by Lasso in the OVA_Ovary 
dataset. Meanwhile, Table 5 shows the first four selected 
genes by RUS + Lasso in the OVA_Ovary dataset since the 
third and fourth genes appear in the same iteration index. It 
also displays the results of the conversion of probeset ID to 
gene symbol.

Table 3 The Accuracy of the Proposed Methods 
on the OVA_Ovary Dataset

Method
Accuracy

Training Testing
Lasso 95,06% 92,88%
RUS + Lasso 98,77% 89,64%

Figure 3(a)

Figure 3(b)
Figure 3 The Plot of Regularization Parameter and the 
Number of Nonzero Coefficients for Each Iteration in 

OVA_Ovary Dataset
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Table 4 The First Three Genes Selected 
by Lasso in the OVA_Ovary Dataset

Probeset ID Gene symbol
209569_x_at NSG1
219873_at COLEC11

206067_s_at WT1

Table 5 The First Four Genes Selected 
by RUS + Lasso in the OVA_Ovary Dataset

Probeset ID Gene symbol
1556051_a_at BICD1

204069_at MEIS1
209569_x_at NSG1
209678_s_at PRKCI

The results of gene selection in the OVA_Ovary 
dataset are surprising. Several selected genes in this dataset 
are not widely studied by researchers, including neuronal 
vesicle trafficking associated 1 (NSG1), collectin subfamily 
member 11 (COLEC11), and BICD cargo adaptor 1 
(BICD1). Meanwhile, the role of Wilms’ tumor 1 (WT1), 
Meis homeobox 1 (MEIS1), and (PRKCI) in ovarian cancer 
has been studied previously.

The expressions of WT1 are analyzed by Liu et al. 
(2014). The research aims to find out the correlation between 
WT1 expression levels and clinical features in ovarian 
cancer. The higher the expression of WT1 is, the higher 
the cancer grade will be. From the research, it is revealed 
that high levels of WT1 expression in ovarian cancer are 
associated with aggressive clinical features. 

Then, MEIS1 plays a role in ovarian carcinogenesis 
(Crijns et al., 2007). MEIS1 has a high expression in ovarian 
tumors compared to normal ovarian surface epithelium and 
other tumor types. Meanwhile, the expression of PRKCI in 
some subtypes of ovarian cancer is studied by Tsang, Wei, 
Itamochi, Tambouret, and Birrer (2017) and Sarkar et al. 
(2017). PRKCI is one of the most overexpressed genes in 
clear cell ovarian cancer (a subtype of ovarian cancer), and 
its expression influences cancer cell proliferation (Tsang 
et al., 2017). PRKCI also has a high expression in serous 
ovarian carcinoma (another subtype of ovarian cancer) 
(Sarkar et al., 2017).

IV.	 CONCLUSIONS

In the OVA_Breast data, the proposed methods 
(Lasso and RUS + Lasso) can produce selected genes that 
become important breast cancer biomarkers. Those are 
GATA3, TRPS1, and IRX5. However, in the OVA_Ovary 
data, several genes have not been widely studied for their 
role in ovarian cancer. The genes are NSG1, COLEC11, 
and BICD1. Therefore, researchers in oncogenomics can 
further explore the role of NSG1, COLEC11, and BICD1 
in ovarian cancer. 

The model obtained in both Lasso and RUS + 
Lasso methods has high accuracy. However, the model is 
complicated because it involves many predictors (genes) 
and allows predictors to have insignificant effects. In the 

OVA_Breast data, it obtains 106 genes from Lasso and 102 
genes from RUS + Lasso at the optimum regularization 
parameter. Meanwhile, the OVA_Ovary data get 71 genes 
from Lasso and 97 genes from RUS + Lasso.

Although the proposed method can be used to 
find biomarkers, it cannot produce a model that is easy to 
interpret. The obtained model cannot be used to explore the 
characteristics of genes in disease, whether the expression of 
these genes tends to be high or low. Therefore, the decision 
tree can be used for the next stage of modeling to obtain a 
model that can be interpreted easily. 

From the research, the researchers also find that 
undersampling does not affect when it is implemented in a 
less imbalanced class. Meanwhile, when the dataset is highly 
imbalanced, undersampling can remove a lot of information 
from the majority class. Nevertheless, the effectiveness of 
undersampling remains unclear, when to use it and when 
not to use it. Therefore, simulation studies can be carried 
out in the next research to learn when undersampling should 
be implemented on high-dimensional data with imbalanced 
classes.
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