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Abstract - Modeling a natural phenomenon or 
the action mechanism of a tool is often done in science 
and technology. Observations through computer 
simulations cost less relatively. In the research, a bullet 
control model moving towards the target was explored. 
The research aimed to try to simulate the trajectory 
of the bullet that could be controlled in hunting. To 
model a controlled bullet, the Dubins model was 
used. Then, the used approach was control theory. 
The optimal trajectory and control for bullets were 
designed using the Pontryagin Maximum Principle. 
The results show that with this principle and the 
dynamic system of the bullet, a system of differential 
equations and adjoining is obtained. The fundamental 
problem arises because the bullet dynamics model in 
the form of a differential equation system has initial 
and final requirements. However, the adjoint matching 
system has no conditions at all. This problem is solved 
by using numerical methods. In addition, the research 
proves the convergence of the calculation results 
with the required results. The track simulation results 
are also reported at the end of the research to ensure 
a successful control design. From the simulation 
results, the presented method with its convergence has 
successfully solved the problem of bullet control.

Keywords: mathematical modeling, bullet control 
model, hunting problems

I.	 INTRODUCTION

Modeling a natural phenomenon or the action 
mechanism of a tool is often done in science and 
technology. The research describes the modeling of 
a bullet that can be controlled to shoot at a target. A 
bullet that can move and turn at a fixed height is chosen 
to be the research topic. It aims to try to simulate the 
trajectory of a bullet that can be controlled in hunting. 

Direct observation of moving bullets is relatively 
difficult to do and dangerous. However, it is not 
difficult and dangerous if the observations are made on 
simulated trajectories of controlled bullet movements. 
Observations through computer simulations cost 
less relatively than firing live bullet. In other words, 
observation by simulation is cheaper and safer than 
observation by an actual bullet. Observation with 
simulation is also always done before the controlled 
bullet is made and fired. In the research, to model a 
controlled bullet, the Dubins model is used.

Until this year, many researchers have studied 
the Dubins model. This fact indicates that Dubins 
model is still an actual object to research. Chen 
(2020) analyzed Dubins paths in a circle path. Next, 
Drchal, Faigl, and Váňa (2020) studied windowing 
surrogate model with Dubins model. Meanwhile, 
Chen and Shima (2019) studied the shortest Dubins 
paths through three points. At the same year, Asfihani, 
Subchan,  Rosyid,  and Sulisetyono (2019) exposed 
Dubins path tracking controller. Next, Ding, Xin, and 
Chen (2019) explored the curvature-constrained path 
for Dubins vehicle. Furthermore, Parlangeli (2019) 
explored the shortest paths for Dubins vehicles. After 
that, Patsko and Fedotov (2018) wrote attainability set 
instantly for one-side turning Dubins car. Meanwhile, 
Yao, Qi,  Zhao,  and Wan (2017) studied bounded 
curvature path planning with expected length for 
Dubins vehicle. Next, Váňa, Faigl, Sláma, and 
Pěnička (2017) researched data collection planning 
with Dubins model. Several years ago, González, 
Monje, Moreno, and Balaguer (2016) researched the 
square method for Unmanned Aerial Vehicle (UAV) 
mission planning with consideration of Dubins model 
constraints. In the same year, Marino, Salaris, and 
Pallottino (2016) researched the controllability of the 
Dubins model. Before that, Meyer, Isaiah, and Shima 
(2015) used the Dubins model to intercept a moving 
target in minimum time.
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Next, the general comparison among the 
mentioned research with the research can be reported 
as follows. The difference between the research and 
Chen (2020) is in the path. Chen (2020) mentioned the 
circle path. However, the research does not consider 
the circle path. Next, Drchal et al. (2020) mentioned 
windowing surrogate model, but the research does 
not use it. Then, the research is different from Chen 
and Shima (2019) in the path design. They considered 
three points that had to be met in the Dubins vehicle. 
However, the research considers two points as initial 
position and final position and one orientation as 
initial orientation and other orientation as final 
orientation. Meanwhile, Asfihani et al. (2019) exposed 
path tracking. The research does not expose tracking. 
Compared to Ding et al. (2019), the research does not 
use curvature-constrained for optimal path design. 

Then, Parlangeli (2019) explored the shortest 
trajectory via points. Meanwhile, the research exposes 
optimal trajectory design that satisfies initial and final 
conditions, including points and orientation.  Moreover, 
Patsko and Fedotov (2018) utilized an attainability set 
for path design in their research. However, the research 
uses Pontryagin Maximum Principle and optimal 
control approach. Similar to Ding et al. (2019), Yao 
et al.  (2017) also utilized curvature-constrained for 
path design. The research does not consider curvature-
constrained for optimal path design. Then, Váňa et al.  
(2017) utilized data collection planning. The research 
does not use it. Next, González et al. (2016) explored 
the square method for path planning design for the 
Dubins model for UAVs mission. On the other hand, 
the research does not use the square method in its 
research process. Compared to Meyer et al. (2015), 
who used different cost functional J to minimize the 
time, the research minimizes the cost controls. The 
Pontryagin Maximum Principle is used in another 
research. Ohsawa (2015) explored contact geometry 
using it. 

The novelty of the research is the mathematical 
convergence proof of the used numerical method 
to solve the problem of the absence of conditions 
or values ​​for adjoint variables. Another novelty is 
the utilization of the Dubins model to describe the 
dynamics of the motion of the bullet in the hunting 
problem.  The Dubins model is a simple non-linear 
mathematical model with multi-input and output.

II.	 METHODS

 The bullet dynamical model that moves with a 
fixed height can be presented as follows.
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There are several reasons why Equation (1) 
is selected in the research. First, it is simple, but 

it can describe the moving bullet in fixed height. 
Second, it is interesting because if linearization at 
the equilibrium point is applied, the model becomes 
uncontrollable. However, in the non-linear form, the 
model is controllable. Third, it contains two essential 
controls or inputs. The first control is for the speed of 
the bullet, and the second one is for direction control. 

Considering the bullet dynamical model in 
Equation (1), (x1, x2) is the position of the bullet and 
x3 is orientation of the bullet. The controls for the 
bullet are u1 and u2. The first control is u1. This control 
influences the velocity of the bullet. The second one, 
u2, controls the direction of the bullet. For the detail, for 
controllability analysis of the bullet dynamical model 
in Equation (1), it can refer to Marino et al. (2016). 
Shortly, the bullet dynamical model in Equation (1) 
can be presented in the general form of non-linear 
control system Affine, with

, , and .

Then, the following process to analyze 
the controllability is the determination of the 
controllability matrix. In this process, the Lie Algebra 
or operation of the Lie bracket is needed. After the 
controllability matrix is obtained and computation of 
its rank is performed, the controllability matrix has 
the third rank. From this fact, it can be concluded that 
the bullet dynamical model in Equation (1) is locally 
accessible. Since it is f(x) = 0, the bullet dynamical 
model (1) is controllable. Controllability analysis 
of the bullet dynamical model in Equation (1) must 
be performed in non-linear analysis. If the analysis 
uses the linearization form in Equation (1), the result 
is not controllable. Controllability analysis is a very 
important thing. If the model is not controllable, it is 
impossible to design its control.

Then, the bullet starts moving from an initial 
position and orientation to the target position and 
orientation. The equation can be seen as follows.

 1 2 3 1 2 3( (0), (0), (0))  to  ( ( ), ( ), ( )).x x x x T x T x T           (2)

Seeing the initial and boundary conditions 
in Equation (2), the abscissa and the ordinate of the 
bullet position are denoted by x1 and x2, respectively. 
The orientation of the bullet is denoted by x3. Then, 0 
is the initial time, and T is the final time. With optimal 
control method, the minimized cost functional model 
can be formulated:

 2 2
1 2

0

1 ( ) .
2

T

J u u dtδ δ= +∫ 			      (3)

In the cost functional model in Equation (3), δ 
is a positive constant denoted by the weight of each 
control. In control theory, the weight of the controls 
can be equal or different. In the research, the weight 
of u1 and u2 are assumed equal to each other and the 
value of δ is one. 
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The existence analysis of the optimal control 
problem will also be discussed. The key of existence 
analysis is based on convex function. Considering the 
cost functional model in Equation (3), 2

1uδ  and 2
2uδ  

are convex functions, respectively. Since the sum of 
the convex function is also a convex function, the cost 
functional model in Equation (3) is a convex function. 
Since the cost functional model in Equation (3) is a 
convex function, the optimal control problem exists. 
Until now, the existence of optimal control problem in 
the research is guaranteed to exist mathematically. If 
existence is not guaranteed, optimal control may not 
be available when it is sought through any methods.

By considering the two controls of the bullet, 
many trajectories can be taken by the bullet to 
move from the initial position to the target position. 
However, with the optimal control design, the optimal 
trajectory can also be determined for the bullet. The 
design of optimal control for bullet uses the Pontryagin 
Maximum Principle. From the bullet model dynamics 
in Equation (1) and cost functional model in Equation 
(3), the Hamiltonian function (H) can be determined. 
The Hamiltonian function connects the bullet 
dynamical model in Equation (1) and the cost functional 
model that must be minimized in Equation (3). Then, 
the Hamiltonian system is determined through the 
partial derivative of Hamiltonian function following 
state variables: x1, x2, and x3 respectively and partial 
derivative of Hamiltonian function regarding adjoint 
variables: p1, p2, and p3, respectively. Next, through 
the utilization of the Pontryagin Maximum Principle, 
the research can derive Hamiltonian function partially 
about the controls of u1 and u2 respectively and equate 
it with 0.

III.	 RESULTS AND DISCUSSIONS

From the Hamiltonian system and the 
Pontryagin Maximum Principle, the controls can be 
derived for the bullet. The controls for the bullet can 
be described in Theorem 1 as follows.

Theorem 1
The controls for the bullet are given as follows.
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Proof:
From Equation (1) and cost functional in Equation (3), 
the Hamiltonian function can be presented.
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Now, the model dynamical system of the bullet 
in Equation (1) and cost functional model in Equation 

(3) are put together in the Hamiltonian function. Then, 
the Hamiltonian system can be obtained as follows.
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Meanwhile, the stationary condition from 
Pontryagin Maximum Principle gives the results as 
follows.
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With simple manipulation, the research takes 
value 0p  = -1 and considers the differential system in 
Equation (7). The controls for bullet can be presented 
as follows.
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From the system of Equation (8), the analytic 
controls or formula of controls bullet are obtained, but 
the problem keeps remaining. The main problem is 
the bullet must move to meet the final conditions  of 

1 2 3( ( ), ( ), ( ))x T x T x T  which is presented in Equation (2). 
Therefore, from Equations (6) and (7), the control of 
Equation (8) is obtained. Then, a system of differential 
equations that must be solved numerically is as 
follows.
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In solving the differential equation system in 
Equation (9) numerically, the problem arises. The 
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state variables that exist in the ascending bullet system 
are x1, x2, and x3. They have initial and final values. 
However, the adjoint variables (p1, p2, and p3) do not 
have specific requirements. If variables of p1, p2, and 
p3 use any values, the bullet cannot reach the final 
target, final position, or final orientation. If the trial 
and error method is used to substitute the values for 
the adjoint variable, the final target of the bullet will be 
challenging to reach the target. This problem is solved 
by a numerical method which is explained in Theorem 
2. In this theorem, the convergence of the computation 
results is also proven. The detail of Theorem 2 and its 
proof can be seen as follows.

Theorem 2
Through the numerical method, which is employed, 
the calculated values ​​will converge to the required 
final values.

Proof:
The system of differential equations in Equation 

(9) is solved by considering it as the initial value 
problem. First, the initial conditions for p1, p2, and p3 are 
given arbitrary values, namely p1(0)= L10, p2(0)= L20, 
and p3(0)= L30. Next, the error tolerance is set.  Then, 
from the conditions for x1(0), x2(0) and x3(0) and the 
system in Equation (8), the first iteration is done. From 
this process, 1 1 2 1 3 3 1 1( ( ) , ( ) , ( ) ) and x T x T x T = −X(T) X(T) X(T)
are obtained. If the value of 

1 −X(T) X(T) is less than or 
as same as the error tolerance value, the calculation 
process stops. If it is not, the initial conditions for the 
adjoint variables of p1, p2, and p3 are corrected with 
following the calculations:
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Here, α and ω are positive constant and 
2

1|| x .( ) x( ) ||F T T= −  Next, the second iteration involves 
the system of differential equations in Equation (9) 
with the new initial conditions for p1, p2, and p3 as 
follows.
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Next, the research compares the value of 
2 −X(T) X(T)  and the error tolerance value. If the value 

of 2 −X(T) X(T) is greater than the error tolerance, it is 
similar to correction for the initial conditions for p1, 
p2, and p3 in the second iteration. The third iteration is 
done with the new initial conditions p1, p2, and p3 as 
follows.
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Similar to after the second iteration, verification 
of 3 −X(T) X(T)  and the error tolerance value are 
performed. If the value of 3 −X(T) X(T)  is greater 
than the error tolerance, the iteration continues to the 
next iteration. The iteration is repeated until the (n-1)-
th iteration. Next, if the value of

1n− −X(T) X(T)  is still 
greater than the error tolerance, the n-th iteration is 
done with the new  initial conditions for p1, p2, and p3  
as follows.
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Until this step, it obtains the number sequence 
of 1X(T) - X(T) , 2X(T) - X(T) , 

3X(T) - X(T) , 4X(T) - X(T)
,..., X(T) - X(T)n .

Next, by mentioning the following equations:

						       (14)

The detail of mathematical proof that the 
sequence of M1, M2, M3, ... will converge to 0. The 
iterations of the calculated value from the final value 
of the state variable will converge to the final value 
of the required state variable given as follows. The 
research takes a metric of d(., .) in R. Furthermore, 
it is assumed that can be taken a continuous function 
of φ with φ : [0, T] ϵ R, and  , 
for each t1 ϵ [0, T]. Because the function of φ is 
continuous, so for each of ε>0, there exists ρ>0, such 
that  

Then, the result obtains  
 

There is  , and it is concluded that 
the sequence {Mi} converges to 0. It means calculated 
values ​​will converge to the required final value.                                              

Theorem 2 has an important contribution to 
the research. With numerical methods that have been 
mathematically proven, the convergence in Theorem 2 
is used to solve problems. To ensure that the problem-
solving method can be used, several simulations are 
conducted. Before the simulations are conducted, 
simulation scenarios are needed to describe how the 
simulation will be carried out.

There are six simulations in the research. For 
each simulation, the origin coordinates or initial 
positions and orientations of the bullet are (0,0,0). 
Simulation 1 is that the bullet moves from (0,0,0) to 
the final condition with fixed abscissa and orientation, 
but the ordinate is changed. The aim of simulation 1 is 
to verify whether the method can work to control the 
bullet reach the final conditions with changed ordinate.

Similar to simulation 1, in the scenario of 
simulation 2, the bullet moves from the origin (0,0,0) 
to final conditions that the ordinate and orientation are 
changed, and the abscissa is still fixed. Simulation 2 
checks whether the method can control the bullet in 
reaching the final target with the changed ordinate 
and the orientation. Next, the scenario of simulation 
3 is described as follows. The bullet moves from the 
origin (0,0,0) to the target with the fixed ordinate and 
orientation and changed abscissa. Simulation 3 shows 
that the numerical method can work properly if the 
ordinate and orientation for the target are still fixed, 
but the abscissa is changed.

Meanwhile, in simulation 4, the bullet moves 

from the origin (0,0,0) to the final destination. The 
abscissa and the orientation are changed, but the 
ordinate is as same as the initial ordinate. Similar to 
the aim of simulation 3, simulation 4 is used to ensure 
the method can reach the final target with the changed 
abscissa and the orientation and fixed ordinate. 
Furthermore, in simulation 5, the bullet moves from 
(0,0,0) to the target with the changed abscissa and the 
ordinate. However, the orientation is fixed. Simulation 
5 shows whether the method can use to solve the 
problem with the target. The abscissa and the ordinate 
are changed, and the orientation is fixed.

In the last scenario, simulation 6, the bullet 
moves with the changed abscissa, ordinate, and 
orientation. It aims to check whether the method can 
work successfully if the bullet moves from the origin 
by changing all aspects of the target. The described 
simulation scenarios are summarized in Table 1. 
According to simulation scenarios, the details of the 
initial and final target, including abscissa, ordinate, 
and orientation for each simulation, are shown in 
Table 2.

Table 1 The Summary of Simulation Scenarios

No Abscissa Ordinate Orientation
1. fixed changed fixed 
2. fixed changed changed
3. changed fixed fixed
4. changed fixed changed
5. changed changed fixed
6. changed changed changed

Table 2 Initial and Final Conditions

Simulation Initial Condition
(m, m, rad)

Final Condition
(m, m, rad)

1 (0,0,0) (0,15,0)
2 (0,0,0) (0,15,pi/2)
3 (0,0,0) (50,0,0)
4 (0,0,0) (15,0,pi/4)
5 (0,0,0) (15,15,0)
6 (0,0,0) (15,15,pi/4)

In the research, all simulations use 0 as the 
initial time and 1 as the final time. The unit of time 
is seconds. The simulation is conducted numerically 
using MATLAB software. MATLAB is chosen 
because its performance in numerical simulation is 
well-known. The simulation results, which contain 
optimal path or optimal trajectory for each simulation, 
are reported in Figures 1 to 6.

After the simulation results are reported, 
the researchers discuss the results. Simulation 1 
demonstrates bullet moving from (0,0,0) to (0,15,0), 
which means simulation successfully done with 
the changed ordinate and the fixed abscissa and 
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orientation. The result of simulation 1 is plotted in 
Figure 1. In Figure 1, the bullet moves from (0,0,0) to 
(0,15,0), but the optimal trajectory is not in the vertical 
line because the orientation of the bullet is considered. 
At the beginning of the movement, the bullet moves 
with a changed orientation. At the final time, the bullet 
orientation is back to 0, or the final orientation is the 
same as the initial orientation.

Figure 1 The Optimal Trajectory of Simulation 1

Simulation 2 shows bullet moving from (0,0,0) 
to (0,15,pi/2). The ordinate and orientation are 
changed, but the abscissa is still fixed. Figure 2 shows 
the result of simulation 2. In Figure 2, the trajectory is 
similar to simulation 1, but the final orientation is pi/2. 
It can also be seen that the changed orientation appears 
until the end of the simulation. At the same time, the 
ordinate also changes to 15.

Figure 2 The Optimal Trajectory of Simulation 2

Simulation 3 describes bullet moving from 
(0,0,0) to (50,0,0). In this simulation, the abscissa is 
changed, but the ordinate and orientation are fixed. 
The result of simulation 3 can be seen in Figure 3. 
The bullet moves horizontally from coordinate (0,0) 
to coordinate (50,0) without changing the orientation.

Figure 3 The Optimal Trajectory of Simulation 3

The bullet moving from (0,0,0) to (15,0,pi/4) 
is simulated in simulation 4. The abscissa and the 
orientation are changed, but the ordinate is still fixed. 
The plot of optimal trajectory for simulation 4 is 
presented in Figure 4. The optimal trajectory of the 
bullet is similar to the result of simulation 3. However, 
the final orientation changes to pi/4 at the final time of 
the simulation.

Figure 4 The Optimal Trajectory of Simulation 4

In simulation 5, the bullet moves from (0,0,0) to 
(15,15,0). This simulation has a fixed orientation, but 
the abscissa and the ordinate are changed. The result 
of simulation 5 is plotted in Figure 5. The optimal 
trajectory of the bullet can be seen that the orientation 
of the bullet changes along with the motion. At the 
final time of simulation, the orientation of the bullet 
is back to the initial orientation. In other words, the 
bullet orientation at the final time of simulation is as 
same as the bullet orientation at the initial time of the 
simulation.
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Figure 5 The Optimal Trajectory of Simulation 5

Finally, the bullet moves from (0,0,0) to 
(15,15,pi/4) described in simulation 6. In the last 
simulation, all aspects (abscissa, ordinate, and 
orientation) are different from the initial condition. 
The result of simulation 6 can be seen in Figure 6. 
It can be observed that optimal trajectory simulation 
6 is similar to the optimal trajectory of simulation 5. 
However, the final orientation of the bullet is different 
from the initial orientation.

Figure 6 The Optimal Trajectory of Simulation 6

IV.	 CONCLUSIONS

Using mathematical modeling (control theory 
and optimal control theory), the problem of bullet 
control can be described properly with the bullet 
dynamical model in Equation (1). The problem is 
successfully resolved. In solving the problem through 
the Pontryagin Maximum Principle, another problem 
arises. There is no requirement for adjoint variables. 
Then, the solution with numerical methods is used to 
solve this problem. The convergence of the calculation 
results with the used numerical method is successfully 
demonstrated. Then, bullet control simulations are 
reported. From the simulation results, the presented 

method with its convergence has successfully solved 
the problem of bullet control. 

The research limitation is no disturbance in the 
bullet moving. In future research, it is more interesting 
if the bullet disturbance can be added as a factor that 
influences the motion of the bullet. An example of a 
disturbance in a bullet is air friction that blocks the 
motion of the bullet. Disturbance can be added to 
the bullet dynamical system equation. Although the 
friction force of the bullet in the air is relatively small, 
including the disturbance factor makes the dynamic 
model of the motion of the bullet closer to actual 
reality in the field. The side effect of the inclusion of 
a disturbance factor in the model makes solving the 
problem relatively more complicated.
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