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Abstract - The research had two objectives. First, it 
compared the performance of the Generalized Autoregressive 
Conditional Heteroscedasticity (1,1) (GARCH) and 
Quadratic GARCH (1,1) (QGARCH)) models based on the 
fitting to real data sets. The model assumed that return error 
follows four different distributions: Normal (Gaussian), 
Student-t, General Error Distribution (GED), and Skew 
GED (SGED). Maximum likelihood estimation was usually 
employed in estimating the GARCH model, but it might 
not be easily applied to more complicated ones. Second, 
it provided two ways to evaluate the considered models. 
The models were estimated using the Generalized Reduced 
Gradient (GRG) Non-Linear method in Excel’s Solver 
and the Adaptive Random Walk Metropolis (ARWM) in 
the Scilab program. The real data in the empirical study 
were Financial Times Stock Exchange Milano Italia Borsa 
(FTSEMIB) and Stoxx Europe 600 indices over the daily 
period from January 2000 to December 2017 to test the 
conditional variance process and see whether the estimation 
methods could adapt to the complicated models. The analysis 
shows that GRG Non-Linear in Excel’s Solver and ARWM 
methods have close results. It indicates a good estimation 
ability. Based on the Akaike Information Criterion (AIC), 
the QGARCH(1,1) model provides a better fitting than the 
GARCH(1,1) model on each distribution specification. 
Overall, the QGARCH(1,1) with SGED distribution best 
fits both data.

Keywords: volatility fitting performance, Quadratic 
Generalized Autoregressive Conditional Heteroscedasticity 
(QGARCH), Student-t, General Error Distribution (GED), 
Skew GED (SGED)

I.	 INTRODUCTION

Volatility is an essential part of making economic 
analysis decisions, such as determining the option prices 
(Bi, Yousuf, & Dash, 2014; Huang, Wang, & Hansen, 
2017). According to Abdalla and Winker (2012), statistical 

volatility can be interpreted as a standard deviation of 
changes in the value (return) of the asset with a specific 
period. The volatility of time series data can exhibit 
heteroscedasticity, which means that the volatility varies 
over time.

A popular model that can be used to model the 
heteroscedastic volatility is Generalized Autoregressive 
Conditional Heteroscedasticity (1,1) (GARCH) of Bollerslev 
(1986). The GARCH (1,1) model has been modified and 
extended to provide an asymmetric relationship between 
volatility and return. According to Francq and Zakoian 
(2019), asymmetric means that a past positive or negative 
return of the same absolute value implies a different effect 
on current volatility. Several asymmetric GARCH models 
have been proposed in the literature, such as Asymmetric 
GARCH (AGARCH) of Engle and Ng (1993), Glosten–
Jagannathan–Runkle GARCH (GJR-GARCH) of Glosten, 
Jagannathan, and Runkle (1993), Exponential GARCH 
(EGARCH) of Nelson (1991), and Quadratic ARCH of 
Sentana (1995). Among them, the research focuses on the 
Quadratic GARCH (QGARCH) model which includes an 
additional term to describe the skewness property (Takaishi, 
2009).

In addition to the asymmetrical nature in data, many 
financial studies have found that the returns distribution of 
financial assets has heavy-tails and skewness characteristics. 
To overcome the heavy-tail in the context of the ARCH/
GARCH model, Bollerslev (1987) applied the Student-t 
distribution, and Nelson (1991) proposed a Generalized 
Error Distribution (GED). Meanwhile, to overcome tail 
thickness and skewness, Theodossiou (2015) introduced 
Skewed Generalized Error Distribution (SGED). To the best 
of the authors’ knowledge, none of the studies compares 
those distributions in the context of the QGARCH model. 
Therefore, the first contribution of the research is to 
provide the empirical comparison of the GARCH and 
QGARCH models with Normal, Student-t, GED, and 
SGED distributions. In this research, the volatility fitting 
performance of competing models is investigated by 
using the log-likelihood ratio test and Akaike Information 
Criterion (AIC).
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Furthermore, the used method to estimate the model 
parameters is the Generalized Reduced Gradient (GRG) 
Non-Linear method provided by Excel’s Solver and the 
Adaptive Random Walk Metropolis (ARWM) method in 
Markov Chain Monte Carlo (MCMC) scheme implemented 
in the Scilab program. Both methods are successfully 
applied by Nugroho et al. (2019a) and Nugroho, Susanto, 
Prasetia, and Rorimpandey (2019b) in estimating other 
GARCH models. Therefore, the second contribution is to 
evaluate the ability of GRG Non-Linear method in Excel’s 
Solver in estimating the QGARCH models.

II.	 METHODS

 The real data used in the application are Financial 
Times Stock Exchange Milano Italia Borsa (FTSEMIB) 
and Stoxx Europe 600 (Stoxx600) indices. The FTSEMIB 
is the primary benchmark stock index for the Italian stocks 
exchange market. This index measures the performance 
of 40 most-traded stock classes on the exchange market. 
Meanwhile, the Stoxx600 index is derived from the Stoxx 
Europe Total Market Index and covers the largest 600 
stocks across 17 countries of the European region. The daily 
returns of both indices cover the daily period from January 
2010 to December 2017 (consisting of 4.433 and 4.502 
observations for FTSEMIB and Stoxx600, respectively), 
which are publicly available in Oxford-Man Institute’s 
realized library. The daily percentage returns at time t are 
calculated using Equation (1), where St denotes the asset 
price at time t.

		     (1)

The statistics summary for both returns data is in 
Table 1. The Jarque–Bera (JB) normality test shows that 
returns data are not normally distributed. It is indicated 
by the greater JB statistical values than the critical value 
of 5,99 at the 5% significance level. The critical value is 
obtained from the chi-square distribution table since the JB 
statistic asymptotically follows a chi-square distribution 
with 2 degrees of freedom (Jarque, 2011). The existence 
of heavy-tailedness in returns data is indicated by greater 
kurtosis values ​​ than 3, whereas the asymmetry in data is 
indicated by skewness that is not equal to zero. Therefore, 
the assumption of Student-t, GED, and SGED distributions 
for return error is expected to be more appropriate than 
Normal distribution.

Table 1 Descriptive Statistics 
for FTSEMIB and Stoxx600 Returns

Index Mean Skewness Kurtosis JB Stats

FTSEMIB -0,0176 -0,2963 11,50 13485
Stoxx600 -0,0263 -0,1994 7,76 4298

QARCH is one type of asymmetric ARCH models 
that allows an asymmetric relationship between past returns 
and current volatility (Sentana, 1995). The QGARCH(1,1) 
is basically similar to the GARCH(1,1) with an additional 
parameter to capture the relationship of volatility-return. 
The QGARCH(1,1) model is expressed as follows:

	 	    (2)

The ω > 0, α ≥ 0, β ≥ 0, and  satisfying 
 ensures positivity of the 

conditional variance and 0 ≤ α + β < 1 as a requirement 
of variance stationarity. The parameter of γ denotes an 
asymmetric effect. When it is γ = 0, the model is reduced 
to the GARCH(1,1) model. When it is γ > 0, the current 
variance will increase more as implied by the past positive 
return than the past negative return. Otherwise, when 
it is γ < 0, the past negative return means the current 
variance increase more than the past positive return. This 
phenomenon is known as the leverage effect.

When the return error (εt) follow the Normal 
distribution, the total log-likelihood function of the model 
is given by:

		     (3)

The  denotes the likelihood function of data 
conditional on parameter. Following Bollerslev (1987), the 
total log-likelihood function for the model with εt follow 
Student-t distribution is expressed as

		     (4)

The ν < 2 illustrates the degree of freedom that affects 
the tail thickness. If  ν goes to infinity, the distribution is 
close to Normal distribution. Meanwhile, the smaller 
degrees of freedom means heavier tails (Blangiardo & 
Cameletti, 2015).

            (5)

					       (6)

The ν > 0 describes the tail thickness. If it is ν = 2, 
the distribution is reduced to the normal distribution. If it 
is ν < 2, the distribution has thicker tails than the Normal 
distribution.

Finally, the total log-likelihood function for the 
model with SGED is expressed by:

	    (7)
That 

	                           (8)
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	                           (9)

	                  (10)

		    (11)

Parameter of κ > 0 denotes a shape parameter by 
controlling the height and tails of the distribution, and 
parameter of   λ means the slope parameter on condition of 
₋1 < λ < 1When it is κ = 2 and λ = 0, the SGED is reduced 
to Normal distribution.

Solver is an add-in Microsoft Excel to solve and 
analyze optimization models (maximum or minimum), 
including non-linear problems. Financial practitioners 
commonly use Excel’s Solver because computer 
programming knowledge is not necessary to solve 
numerical optimization. The researchers choose the GRG 
Non-Linear method in Excel’s Solver to find the parameter 
values that maximize log-likelihood. This method is often 
the preferred choice for general use (Rothwell, 2017). In 
the GRG Non-Linear scheme, each existing value of the 
decision parameter will be taken as the initial solution. A 
small change in parameter will improve the objective value 
(Powell & Batt, 2014).

Next, MCMC is a Bayesian algorithm consisting of 
two main steps: generating random variables as Markov 
chains and applying a Monte Carlo approach to calculate 
statistical values from Markov chains (Marin & Robert, 
2014). Within the Bayesian framework, the random variable 
is generated from the posterior distribution. The posterior 
distribution for the parameter of θ conditional on data y is 
in Equation (12). The ρ(θ) denotes the prior distribution.

			    (12)

A method for generating a Markov chain is ARWM 
method. The ARWM method is statistically efficient in 
estimating the GARCH(1,1) models (Nugroho, 2018). 
The ARWM procedure is employed as follows. First, the 
initial conditions are the parameter of θ0 and the step size 
of s0. Second, it starts on iteration n = 1, by generating 

proposal of  where ηn~N(0,1), 

calculating Metropolis ratio of 

, and generating u~U(0,1). If u < r, then θn = θn-1, 

else θn = θ*. Third, given snϵ[smin, smaks], it calculates 

 The m(θ*) defines 

the frequency of proposals acceptance for θ*. If it is                 
w < smaks , it will be sn = w, else sn = smaks.

III.	 RESULTS AND DISCUSSIONS

For the GRG Non-Linear scheme in Excel’s Solver, 
the initial values of the model parameters are set to as 
follows:

, , , , 
,  , and .

Then, the estimation steps follow Nugroho, Susanto, 
and Rosely (2018). In the MCMC scheme, the ARWM 
method is implemented in the Scilab program by writing its 
code. With the starting values as Excel’s Solver, the MCMC 
algorithm runs with 6.000 iterations for each parameter 
to generate Markov chains. The first 1.000 samples are 
discarded to reduce the non-stationarity caused by initial 
values. The remaining 5.000 samples are saved to calculate 
the posterior mean and the 95% of Highest Posterior 
Density (HPD) interval of Chen and Shao (1999). The prior 
distribution on parameters ( ω, α, β, and κ) is left-truncated, 
and the Normal distribution of N(0,1000) is as in Ardia and 
Hoogerheide (2010). Meanwhile, on the parameter of λ is 
the Normal distribution of N(0,1000), and parameter of ν 
with exp(0,01) distribution as in Deschamps (2006).

Let θ = {θ(1), θ(2), …, θ(M)} be a Markov chain for 
a parameter θ. For a desired significance level of δ, the 
computational approach to calculate 100(1-δ)% of HPD 
interval for θ is as follows (Chen & Shao, 1999; Chen, 
Shao, & Ibrahim, 2012; Le, Pham, Nguyen, & Pham, 
2020). First, calculate Mcut = [δM] and Mspan = M – Mcut, in 
which,[x] defines the standard rounding function. Second, 
sort the estimated value of in which θ1 ≤ θ2 ≤... ≤ 

θM. Third, calculate . Fourth, 

find an index of m that θm in θ* is the minimum value. Then, 
the 100(1-δ)% HPD interval for θ is .

The estimation result by the MCMC method is used 
as a particular reference to see the estimation accuracy of 
the GRG Non-Linear method in Excel’s Solver. Hence, 
the sampling efficiency of the MCMC method will be 
considered first. In this case, the sampling efficiency can be 
seen through a visual inspection based on the trace plot of 
the estimated values ​​for each parameter (Turner, Sederberg, 
Brown, & Steyvers,  2013). The trace plot for each parameter 
is a time series plot showing samples (the realizations of 
the Markov chain) at each iteration against the number of 
iterations (Roy, 2020). The diagnostic by viewing the trace 
plot is the most common method to assess the Markov chain 
convergence graphically. It can be done by viewing the 
chain mixing. When a trace plot tends to be stable within 
the whole parameter space (values of samples), the chain is 
said to be well mixing, and it will take faster to convergence 
(Tsikerdekis, 2016).

For example, the research reports the sampling 
efficiency only for the most complicated model case, i.e., 
the QGARCH(1,1) model with SGED. Figure 1 presents 
the trace plots of the last 5.000 samples of the estimated 
parameters in the QGARCH(1,1) model with SGED 
adopting the FTSEMIB data. Trace plots show that the 
chains fluctuate around their average (or it is said to be 
stationary). It indicates that the chains are well mixed and 
converge to their posteriors. Therefore, the ARWM method 
in the MCMC scheme is efficient for estimating the model. 
This result supports the results of Nugroho (2018).

Next, Tables 2 and 3 show the results of estimated 
parameters for all models adopting FTSEMIB and Stoxx600, 
respectively. First, the researchers notice that the value of 
λ in the case of GED distribution is not obtained directly. 
It is calculated using Equation (6) based on the estimated 
value of ν. Although Excel’s Solver does not provide strict 
conditions for the “>” or “<” sign, the violation of α + β =1 
does not occur in the research. Such violation is found by 
Nugroho et al. (2019b).

Furthermore, from observation of the difference 
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(bias) between estimated values ​​obtained from Excel’s 
Solver and MCMC, it shows that both methods have close 
results (relatively) for the estimated values. Therefore, it 
can be said that the GRG Non-Linear method in Excel’s 
Solver has a good ability to estimate all models even though 
the objective function (log-likelihood) has a complicated 
form. So, Excel’s Solver tool can be recommended 
for financial practitioners who have little computer 
programming knowledge. A disadvantage of the GRG Non-
Linear method in Excel’s Solver is the unavailability of 
parameter significance. It means that the estimation value 
is really different or statistically significant. Meanwhile, the 
MCMC algorithm can provide the significance of estimated 
parameter values ​​based on a generated Markov chain. 

Table 4 presents 95% of HPD intervals for the 
asymmetric parameter of γ in forming the QGARCH model, 

the parameter of ν in developing the GED, and the parameters 
of λ and κ in forming the SGED. In each distribution, 95% 
of the HPD interval for γ does not include zero. It indicates 
that the asymmetric parameter is significant and needs 
to be incorporated into the GARCH model. In particular, 
the values of γ are negative, which means that the current 
variance will increase more as implied by the past negative 
return than the positive return of the same magnitude. So, 
the leverage effect exists in the Stoxx600 data.

For the parameter of ν with GED, the 95% of HPD 
interval excludes 2 and particularly less than 2 in fitting 
on both real data. It means that both real data support the 
GED rather than the Normal distribution as the preliminary 
analysis. This result suggests the necessity of the skewness 
feature in explaining the skewed characteristic for both real 
data.

Figure 1 Trace Plots of the Six Chains for the QGARCH(1,1) 
Model with SGED Adopting the FTSEMIB Data

Table 2  The Estimated Results of Models by Adopting FTSEMIB Returns Data

Model
Parameter

ω α β γ υ κ λ 
Excel’s Solver
GARCH 0,0182 0,1260 0,8580 - - - -
GARCHt 0,0142 0,1026 0,8824 - 7,16 - -
GARCHged 0,0160 0,1126 0,8711 - 1,42 - -
GARCHsged 0,0135 0,0971 0,8730 - - 1,398 -0,1172
QGARCH 0,0254 0,1252 0,8434 -0,0200 - - -
QGARCHt 0,0224 0,1070 0,8615 -0,0174 7,65 - -
QGARCHged 0,0240 0,1151 0,8525 -0,0189 1,43 - -
QGARCHsged 0,0199 0,0992 0,8531 -0,0194 - 1,379 -0,1202
MCMC
GARCH 0,0195 0,1323 0,8509 - - - -
GARCHt 0,0149 0,1052 0,8794 - 7,33 - -
GARCHged 0,0164 0,1130 0,8703 - 1,42 - -

GARCHsged 0,0139 0,0977 0,8720 - 1,399 -0,1178

QGARCH 0,0265 0,1264 0,8408 -0,0198 - - -
QGARCHt 0,0246 0,1114 0,8542 -0,0180 7,83 - -
QGARCHged 0,0261 0,1206 0,8449 -0,0193 1,43 - -
QGARCHsged 0,0191 0,0982 0,8564 -0,0171 - 1,382 -0,1214
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Regarding the parameters in SGED, the 95% of HPD 
interval for λ does not include 0, and the 95% HPD interval 
for κ is not equal to 2. It indicates that the parameters of 
λ and κ are significant. Both real data provide supporting 
evidence for the SGED rather than the Normal distribution 
as the preliminary analysis. This result suggests the necessity 
of both skewness and kurtosis features in explaining the 
skewed and heavy-tails characteristics for both real data.

In the model evaluation, when two competing 
models are nested—one model contains the others, the 
goodness of fit can be assessed using the Log-likelihood 
Ratio Test (LRT). The LRT between a basic model (M0) and 
an alternative model (M1) is based on the following statistic 
(Francq & Zakoian, 2019):

	                         (13)

The  denotes the log-likelihood value for Mi. 
Since the distribution of LRT is chi-square, the critical 
values at the significance levels of 1%, 5%, and 10% are 
6,64, 3,84, and 2,71, respectively, for 1 degree of freedom. 
For 2 degrees of freedom, it is 9,21, 5,99, 4,61, respectively. 
In this case, degrees of freedom refers to the difference in 
the number of parameters between two competing models. 
The LRT rejects the basic model if the value of the LRT 
statistic is greater than a critical value.

Table 3  The Estimated Results of Models by Adopting Stoxx600 Returns Data

Model
Parameter

ω α β γ υ κ λ 

Excel’s Solver

GARCH 0,0177 0,0951 0,8963 - - - -
GARCHt 0,0123 0,0860 0,9092 - 7,82 - -
GARCHged 0,0147 0,0900 0,9032 - 1,44 - -
GARCHsged 0,0135 0,0834 0,9023 - - 1,4332 -0,0860
QGARCH 0,0278 0,0979 0,8818 -0,01480 - - -
QGARCHt 0,0205 0,0883 0,8969 -0,01030 8,37 - -
QGARCHged 0,0272 0,0978 0,8826 -0,01333 1,46 - -
QGARCHsged 0,0218 0,0858 0,8855 -0,01466 - 1,4034 -0,0881
MCMC
GARCH 0,0184 0,0959 0,8950 - - - -
GARCHt 0,0126 0,0839 0,9106 - 8,08 - -
GARCHged 0,0173 0,0970 0,8950 - 1,43 - -
GARCHsged 0,0142 0,0850 0,9007 - - 1,437 -0,0858
QGARCH 0,0302 0,1034 0,8753 -0,0154 - - -
QGARCHt 0,0263 0,0984 0,8832 -0,0127 8,55 - -
QGARCHged 0,0272 0,0978 0,8826 -0,0133 1,45 - -
QGARCHsged 0,0239 0,0867 0,8814 -0,0152 - 1,397 -0,0880

Table 4  HPD Intervals at 5% of Significance Level for the Key Parameters of Competing Models

Data Parameter GARCHged GARCHsged

FTSEMIB

ν (1,3527, 1,4987) -

 κ - (1,3359, 1,4783)

λ - (-0,1511, -0,0837)

Stoxx600

ν (1,3575, 1,5145) -

 κ - (1,3617, 1,5162)

λ - (-0,1220, -0,0530)
Data Parameter QGARCH QGARCHged QGARCHsged

FTSEMIB

γ (-0,0284, -0,0086) (-0,0243, -0,0060) (-0,0231, -0,0056)
ν - (1,3725, 1,5887) -
 κ - - (1,3221, 1,5042)
λ - - (-0,1816, -0,0906)

Stoxx600

γ (-0,0231, -0,0047) (-0,0185, -0,0035) (-0,0208, -0,0062)
ν - (1,3215, 1,5251) -
 κ - - (1,2665, 1,4578)
λ - - (-0,1518, -0,0576)
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Regarding distribution, the research has two cases of 
nested models, i.e., both GED and SGED nest the Normal 
distribution. Based on LRT, Table 5 reports the performance 
comparison of the GED and SGED specifications against the 
Normal distribution, which are applied to the GARCH(1,1) 
and QGARCH(1,1) models. The LRT is done by assuming 
the hypothesis as follows:
H0	 :	 M0 (Model with Normal distribution)
H1	 :	 M1 (Model with either GED or SGED)

The results show that the LRT statistic values for 
all cases are greater than the critical value at a significance 
level of 1%. This finding indicates the rejection of H0. In 
other words, the GED or SGED is more appropriate for all 
observed data than the Normal distribution. It supports the 
previous results related to the significance of the skewness 
and heavy-tailedness parameters in Table 4.

Table 5  LRT Values

Model Data
Normal GED SGED
Log-like. Log-like. LRT  Log-like. LRT 

Excel’s Solver

GARCH
FTSEMIB -5386,91 -5297,51 178,80 -5277,41 219,00
Stoxx600 -6866,54 -6799,09 134,90 -6787,64 157,80

QGARCH
FTSEMIB -5371,54 -5285,56 171,96 -5262,63 217,82
Stoxx600 -6853,44 -6790,51 125,86 -6773,00 160,88

MCMC 

GARCH
FTSEMIB -5387,08 -5297,52 179,12 -5277,42 219,32
Stoxx600 -6866,57 -6799,43 134,28 -6787,66 157,82

QGARCH
FTSEMIB -5372,16 -5286,76 170,80 -5263,19 217,94
Stoxx600 -6854,61 -6791,66 125,90 -6777,30 154,62

Table 6  AIC Values

Model Distribution Excel’s Solver MCMC Distribution 
Rank

Overall
Rank

FTSEMIB

GARCH

Normal 10779,82 10780,16 4 8
Student-t 10559,03 10559,18 1 3
GED 10603,03 10603,04 3 6
SGED 10564,82 10564,84 2 4

QGARCH

Normal 10751,09 10752,32 4 7
Student-t 10537,40 10539,88 2 2
GED 10581,11 10583,52 3 5
SGED 10537,26 10538,38 1 1

Stoxx600

GARCH

Normal 13739,09 13739,14 4 8
Student-t 13599,81 13599,96 2 5
GED 13606,19 13606,86 3 6
SGED 13585,27 13585,32 1 2

QGARCH

Normal 13714,88 13717,22 4 7
Student-t 13587,20 13590,64 2 3
GED 13591,01 13593,32 3 4
SGED 13558,00 13566,60 1 1

Regarding all specifications, since all candidate 
models are non-nested—neither can be obtained from the 
other, the AIC of Akaike (1998) can be used to determine 
the best-fitting model. An AIC score is calculated using 
Equation (14) (Snipes & Taylor, 2014). The k is the number 
of estimated parameters, and   is the likelihood value for 
the estimated parameters. A lower AIC indicates a better fit.

	     			     (14)

Table 6 presents the AIC values ​​for all cases. First, 
considering the comparison among four distributions, 
the results show that the SGED distribution best fits the 
Stoxx600 data in each model, followed by Student-t, 
GED, and Normal distributions. This finding confirms the 
previous results related to the significance of parameters 
in GED and SGED distributions in Table 4. Meanwhile, 
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in adopting the FTSEMIB data, the SGED distribution 
provides the best data fit for the QGARCH model only. So, 
it suggests applying the flexible distribution, which treats 
heavy-tails and skewness in returns distribution. Second, 
comparing the GARCH (1,1) and QGARCH(1,1) models in 
each distribution, the results show that the QGARCH(1,1) 
model fits better than the GARCH (1,1) model. Finally, AIC 
suggests the QGARCH(1,1) model with SGED distribution 
as the best fitting model.

IV.	 CONCLUSIONS

The research analyzes the volatility fitting 
performance of GARCH(1,1) and QGARCH (1,1) 
models based on the FTSEMIB and Stoxx600 indices by 
assuming that the return error follows Normal, Student-t, 
GED, and SGED distribution. The models are estimated 
using the GRG Non-Linear method in Excel’s Solver and 
the MCMC’s ARWM method implemented in the Scilab 
program. Based on estimation results, it finds that the GRG 
Non-Linear method in Excel’s Solver produces similar 
estimation values ​​ to MCMC’s ARWM method. Therefore, 
the first main research finding is that GRG Non-Linear 
method in Excel’s Solver has a reliable ability to estimate 
the complicated models. Based on LRT, in particular, GED 
and SGED statistically outperform the Normal distribution. 
Furthermore, the second main finding is that QGARCH(1,1) 
with SGED distribution provides the best fitting in AIC. 
Overall, the QGARCH(1,1) with SGED distribution best 
fits both data.

These findings contribute to the existing literature 
by using Excel’s Solver for the financial practitioners who 
have limited programming knowledge, and the expansion 
of QGARCH models, and their fitting performance in 
the stock market. Therefore, the results have practical 
implications for financial practitioners to use a simple 
alternative estimation method and to improve the optimality 
of investment strategy.

The research has two-fold limitations. First, the 
research considers three non-Normal distributions. The 
assumption of other distributions will make the model fit 
the data better. The second limitation is that the model 
solely relies on daily returns. The incorporation of realized 
measures in the variance process will improve the modeling 
and forecasting of financial volatility. As a possible 
extension of the research, the assumption of other non-
Normal distributions and incorporation of realized variance 
as a term in the conditional variance process can be applied. 
These aspects are the topics of the authors’ current research.

ACKNOWLEDGEMENTS

The research is funded by (1) Kemenristek-BRIN 
Indonesia via the PDUPT scheme for the 2020 fiscal year 
and (2) Universitas Kristen Satya Wacana via the Internal 
Research Fund for the 2020 fiscal year.

REFERENCES

Abdalla, S. Z. S., & Winker, P. (2012). Modelling stock 
market volatility using univariate GARCH models: 
Evidence from Sudan and Egypt. International 
Journal of Economics and Finance, 4(8), 161-176.

Akaike, H. (1998). Information theory and an extension 
of the maximum likelihood principle. In Selected 

papers of Hirotugu Akaike (pp. 199-213). New York: 
Springer.

Ardia, D., & Hoogerheide, L. F. (2010). Bayesian 
estimation of the GARCH (1, 1) model with student-t 
innovations. The R Journal, 2(2), 41-47.

Bi, Z., Yousuf, A., & Dash, M. (2014). A study on options 
pricing using GARCH and Black-Scholes-Merton 
model. Asian Journal of Finance & Accounting, 
6(1), 423-439.

Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-
temporal Bayesian Models with R-INLA. Chichester: 
John Wiley & Sons.

Bollerslev, T. (1986). Generalized autoregressive conditional 
heteroskedasticity. Journal of Econometrics, 31(3), 
307-327.

Bollerslev, T. (1987). A conditionally heteroskedastic 
time series model for speculative prices and rates 
of return. The Review of Economics and Statistics, 
69(3), 542-547.

Chen, M. H., & Shao, Q. M. (1999). Monte Carlo estimation 
of Bayesian credible and HPD intervals. Journal of 
Computational and Graphical Statistics, 8(1), 69-
92.

Chen, M. H., Shao, M. Q., & Ibrahim, J. G. (2012). Monte 
Carlo methods in Bayesian computation. Springer 
Science & Business Media.

Deschamps, P. J. (2006). A flexible prior distribution for 
Markov switching autoregressions with student-t 
errors. Journal of Econometrics, 133(1), 153-190.

Engle, R. F., & Ng, V. K. (1993). Measuring and testing the 
impact of news on volatility. The Journal of Finance, 
48(5), 1749 -1778.

Francq, C., & Zakoian, J. M. (2019). GARCH models: 
Structure, statistical inference and financial 
applications. John Wiley & Sons.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). 
On the relation between the expected value and the 
volatility of the nominal excess return on stocks. The 
Journal of Finance, 48(5), 1779-1801.

Huang, Z., Wang, T., & Hansen, P. R. (2017). Option pricing 
with the realized GARCH model: An analytical 
approximation approach. Journal of Futures 
Markets, 37(4), 328-358.

Jarque, C. M. (2011). Jarque-Bera test. In M. Lovric (Ed.), 
International encyclopedia of statistical science (pp. 
701-702). Berlin, Heidelberg: Springer.

Le, H., Pham, U., Nguyen, P., & Pham, T. B. (2020). 
Improvement on Monte Carlo estimation of HPD 
intervals. Communications in Statistics-Simulation 
and Computation, 49(8), 2164-2180.

Marin, J. M., & Robert, C. P. (2014). Bayesian essentials 
with R. New York: Springer.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset 
returns: A new approach. Econometrica: Journal of 
the Econometric Society, 59(2), 347-370.

Nugroho, D. B. (2018). Comparative analysis of three 
MCMC methods for estimating GARCH models. 
IOP Conference Series: Materials Science and 
Engineering, 403, 1-7.

Nugroho, D. B., Kurniawati, D., Panjaitan, L. P., Kholil, Z., 
Susanto, B., & Sasongko, L. R. (2019a). Empirical 



104 ComTech: Computer, Mathematics and Engineering Applications, Vol. 11 No. 2 December 2020, 97-104

performance of GARCH, GARCH-M, GJR-GARCH 
and log-GARCH models for returns volatility. 
Journal of Physics: Conference Series, 1307, 1-7.

Nugroho, D. B., Susanto, B., Prasetia, K. N. P., & 
Rorimpandey, R. (2019b). Modeling of returns 
volatility using GARCH (1, 1) model under Tukey 
transformations. Jurnal Akuntansi dan Keuangan, 
21(1), 12-20.

Nugroho, D. B., Susanto, B., & Rosely, M. M. M. (2018). 
Penggunaan MS Excel untuk estimasi model 
GARCH (1, 1). Jurnal Matematika Integratif, 14(2), 
71-82.

Powell, S. G., & Batt, R. J. (2014). Modeling for insight: A 
master class for business analysts. Wiley.

Rothwell, A. (2017). Optimization methods in structural 
design. Springer International Publishing.

Roy, V. (2020). Convergence diagnostics for Markov chain 
Monte Carlo. Annual Review of Statistics and Its 
Application, 7, 387-412.

Sentana, E. (1995). Quadratic ARCH models. The Review 
of Economic Studies, 62(4), 639-661. 

Snipes, M., & Taylor, D. C. (2014). Model selection and 
Akaike Information Criteria: An example from wine 
ratings and prices. Wine Economics and Policy, 3(1), 
3-9.

Takaishi, T. (2009). Bayesian inference on QGARCH 
model using the adaptive construction scheme. In 
2009 Eighth IEEE/ACIS International Conference 
on Computer and Information Science (pp. 525-
529). IEEE. 

Theodossiou, P. (2015). Skewed generalized error 
distribution of financial assets and option pricing. 
Multinational Finance Journal, 19(4), 223-266.

Tsikerdekis, M. (2016). Bayesian inference. In J. Robertson 
& M. Kaptein (Eds.), Modern statistical methods for 
HCI (pp. 173-197). Springer.

Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, 
M. (2013). A method for efficiently sampling 
from distributions with correlated dimensions. 
Psychological Methods, 18(3), 368-384.


