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Abstract - This research focused on the modification 
of deterministic mathematical models for tuberculosis 
with vaccination. It also aimed to see the effect of giving 
the vaccine. It was done by adding vaccine compartments 
to people who were given the vaccine in the susceptible 
compartment. The population was divided into nine 
different groups. Those were susceptible individuals 
(S), vaccine (V), new latently infected (E1), diagnosed 
latently infected (E2), undiagnosed latently infected (E3), 
undiagnosed actively infected (l), diagnosed actively 
infected with prompt treatment (Dr), diagnosed actively 
infected with delay treatment (Dp), and treated (T). Basic 
reproduction number was constructed using next-generation 
matrix. Sensitivity analysis was also conducted. The results 
show that the model comprises two equilibriums: disease-
free equilibrium (T0) and endemic equilibrium (T*). It 
also shows that there is a relationship between R0 and two 
equilibriums. Moreover, the disease-free equilibrium point 
is asymptotically stable local when it is R0 < 1. Then, the 
disease-endemic equilibrium point is asymptotically stable 
local when it is R0 > 1. Furthermore, the parameters of β, ρ, 
and γ are the most important parameter.

Keywords: dynamical system, mathematical model,  
tuberculosis, vaccination

I. INTRODUCTION

Tuberculosis (TB) is the infectious diseases caused 
by Mycobacterium Tuberculosis. It is transmitted through 
the air (spits, coughing, or speaking) from a person suffering 
from active TB. Generally, it infects the lungs, but it can also 
affect other organs. Most people infected with TB have not 
shown symptoms known as latent types of infection. People 
with latent types cannot infect other people. However, if it 
is untreated, it will become an active disease. The common 
symptoms of active TB are chronic cough accompanied by 
blood, fever, night sweats, and weight loss. People who are 
infected in other organs can show various symptoms. Active 

infection is more common in people affected by HIV/AIDS 
and people who smoke (Lawn & Zumla, 2011).

Based on the WHO in 2018, it was estimated that 
a quarter of the world’s population was infected by TB. 
Every year, new infections were occurred in about 1% of 
the population. In 2017, TB cases were the number one 
cause compared to other infectious diseases. This was 
because there were more than 10 million cases of active TB. 
It resulted in 1,3 million deaths as many as 95% occurring 
in developing countries. More than 50% happened in India, 
China, Indonesia, Pakistan, and Philippines. In Indonesia, 
there had been 842.000 cases of TB sufferers (World Health 
Organization (WHO), 2018).

An essential component of TB control is the 
diagnosis of latent TB infection and rapid treatment of active 
infection. When TB infection is not detected, there can be a 
delay in treatment of latent and active TB. Thus, it can cause 
more severe disease conditions resulting in a wider spread 
of the disease (Al-Darraji, Altice, & Kamarulzaman, 2016). 

In addition, other efforts can be made to control the 
spread of developing and dangerous TB. One of them is by 
giving vaccines. The vaccine used for TB is the Bacillus 
Calmette-Guerin (BCG). It is the only vaccine or the most 
often used. It can reduce the risk of being infected with TB 
bacteria. BCG can only be given once to someone (newly 
born or has never been infected with TB). Currently, there 
are new vaccines under development  (Lawn & Zumla, 
2011).

The transmission of TB is still happening to this 
day. For this reason, a way is needed to study the pattern 
of the spread of TB. One tool that can be used is by making 
mathematical models. The mathematical model known as 
the epidemic model is created by Kermack and McKendrick 
(1927). They assumed a fixed population. It consisted of 
only three compartments. Compartments were divided 
into three classes. Those were susceptible populations (S), 
infected populations (l), and populations recovering from 
disease (R). It was also known as SIR models. Over time, 
the model continued to be developed (Roni, 2011; Side, 
Sanusi, & Setiawan, 2016).
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Several mathematical models of TB transmission 
have been made and used to study the dynamics of the 
spread of TB in a population. For example, Aparicio and 
Casstillo-Chavez (2009) presented a mathematical model of 
TB epidemics. Okuonghae (2013) showed a mathematical 
model of TB transmission with heterogeneity and 
progression under a treatment regime for infectious cases. 
Next, Trauer, Denholm, and McBryde (2014) presented the 
construction of a mathematical model for TB transmission 
in highly endemic. Then, the model of Okuonghae and 
Ikhimwin (2016) classified the latently infected individuals 
by their level of TB awareness. Moreover, Egonmwan and 
Okuonghae (2019) had a mathematical model for TB with 
the diagnosis. 

The model in this research is modifying the model 
of Egonmwan and Okuonghae (2019). It is because the 
previous model only pays attention to the circumstances of 
individuals who have interacted with infected individuals.  
The model of Egonmwan and Okuonghae (2019) is an 
epidemic model with eight compartments. The model is 
made by considering several conditions. Some patients 
are not diagnosed or diagnosed with latent or active TB 
infection. Then, there are delay and timeliness in the 
treatment of some active cases in patients. 

The mathematical models by Egonmwan and 
Okuonghae (2019) do not consider preventive measures 
regarding the spread of TB. Therefore, a model is created 
by considering preventive measures. It is done by giving 
vaccines. The researchers modify the model by adding 
vaccination compartments as a precaution before interacting 
with infected individuals. Vaccination compartments are a 
collection of individuals who have been given a vaccine. 
This modification is made to see the effect of vaccine 
administration or vaccine effectiveness given to individuals 
who have never been infected with Mycobacterium 
Tuberculosis and parameters that influence to spread of 
tuberculosis.

 
II. METHODS

This research is a literature review. The method is a 
mathematical model from the transmission of TB disease. 
Then, the researchers modify it. The researchers also find 
the basic fixed points and reproduction number from the 
equation system to analyze the stability of the fixed points. 
It uses the Routh-Hurwitz criteria and center manifold 
theory. Then, a sensitivity analysis is performed to see 
which influential parameters raise or decrease the basic 
reproduction number.

III. RESULTS AND DISCUSSIONS

Egonmwan and Okuonghae (2019) made a 
deterministic epidemic model with ordinary differential 
equations. The population size was divided into eight 
special compartments. There was the total population at 
time (t). The N is the total population of individuals in each 
compartment. Moreover, there were  susceptible individuals 
(S), new latently infected (E1), diagnosed latently infected 
(E2), undiagnosed latently infected (E3), undiagnosed 
actively infected (l), diagnosed actively infected with 
prompt treatment (Dr), diagnosed actively infected with 
delay treatment (Dp), and individuals given treatment (T).

Assumed μ is the natural death rate that can 
occur in each class of the population. Each δ1, δ2, and δ3 

represents the mortality rate caused by active TB infection. 
Newborn individuals (A) belong to the population class 
(S). If individuals in S population interact with individuals 
population of l, Dr, and Dp, they will be infected. It is as much 
as the strength of infection λ. By β being the transmission 
rate, η1 and η2 are the modification parameters. It causes a 
reduced probability of disease transmission by individuals 
diagnosed with active TB with immediate treatment (Dr) 
and delay treatment (Dp). 

Therefore, in this research, a model is made 
by modifying the previous models of Egonmwan and 
Okuonghae (2019). Individuals in vulnerable populations 
are given vaccines at rate of  γ so they can be protected from 
the attack of Mycobacterium Tuberculosis. The commonly 
used vaccine is BCG. Giving vaccines only aims to increase 
the body’s immune system. Therefore, individuals given 
vaccines can move into latently infected individuals with a 
rate of ελ when interacting with individuals with active TB 
infection. Then, ε is the effectiveness of vaccines against TB 
development by Kalu and Inyama (2012). In addition, the 
natural death rate can occur in the vaccination compartment. 
This modification is done to see the key parameters that 
have the greatest influence on the transmission dynamics of 
TB using the basic reproduction number of the model.

A vaccine can increase the body’s resistance. Thus, 
the model is made with the assumption that when someone 
who is given a vaccine in interacting with someone who 
is actively infected with TB, the person enters the class of 
new latent infection (E1) (Nainggolan, Supian, Supriatna, & 
Anggriani, 2013). Schematically, the pattern of tuberculosis 
spread modification models is depicted in the compartment 
diagram in Figure 1.

Figure 1 Diagram Modification 
Equation (1) of the TB

Based on the diagram in Figure 1, the researchers 
have a system of ordinary differential equations as follows:
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and 
 as the total population at time t.     (1)

Model (1) is a human population, so the variables 
and parameters must be positive at time t. Therefore, it will 
be shown that all variables are not negative. The initial 
values   for each compartment are S(0)≥0, V(0)≥0, E1(0)≥0, 
E2(0)≥0, E3(0)≥0, l(0)≥0, Dr(0 ≥0, Dp(0)≥0, T(0)≥0. It is 
with the positive value of all parameters in the system, and 
the description of each parameter is in Table 1.

Table 1 Parameter and Description of the Model

Parameter Description Unit

μ Natural  death rate year-1

A Recruitment rate year-1

γ Rate of vaccinating year-1

β Transmission rate year-1

ε Effective of vaccine  (0<ε<1) -
η1 The rate of reduction in TB patients 

(Dr) in
year-1

η2 The rate of reduction in TB patients 
(Dp) in

year-1

κ
Disease progression rate from the class 
of undiagnosed latently infected  to 
active TB (l)

year-1

α
The rate of latently infected individuals 
become diagnosed individuals. year-1

ρ Fraction of fast TB progression (0<ρ<1) -

b1, b2 Parameters of exogenous re-infection year-1

b3

Modification parameters that result in a 
successful increase in reinfection after 
treatment

year-1

n Proportion of new latent TB that are 
diagnosed

-

c Rate of diagnosis of latent TB infection year-1

q Proportion  of detected active TB cases 
who receive prompt treatment -

K Rate of detection of active TB cases year-1

δ1, δ2, δ3
The death rate for individuals of  year-1

r0, r1, r2
Treatment rates for individuals of  year-1

Lemma 3.1  Set  
is a non-negative and limited regional solution of system 
(1) with N0 as the initial total population. Then, S0 is the 

population of the susceptible individual at time t = 0 
(Apriliani, 2016).

Proof  Let , and it is given the 
initial value for each population when t = 0, where , 

, , , , , , , 
Summing the nine equations of the system of 

equation (1) gives a change in total population N to time t 
as follows:

                               
          (2)

since δ1, δ2, δ3 > 0 and l, Dr,Dp ≥ 0, the equation (2) 
can be written as:

         (3)

The equation (3) is solved using an integrating factor 
by Robinson (2004) with an initial value of N(0) = N0. Then, 
it can be rewritten as:

            (4)

     (5)

Since it is , then 
for each , it shows that

         (6)

With the same way, it will be shown that S is also 
limited. The first equation in the system of equation (1) is 
as follows:

                              (7)

It can be rewritten as follows:

      (8)                         

Thus, it is:

          (9)

So, it can be:

        (10)

Similarly, it can be shown that V(t)>0, E1(t)>0, 
E2(t)>0, E3(t)>0, l(t)>0, Dr(t)>0, Dp(t)>0, T(t)>0 for all time 
t > 0. Thus, all solutions of system (1) remain positive for 
all non negative initial conditions.
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Table 2 Parameters Values of the Model

Parameter Ranges of 
Values

Source

A 1000-2000 Apriliani (2016)
γ 0,2-0,005 Apriliani (2016)
μ 0,0222 Apriliani (2016)
ρ 0,1- 0,2 Egonmwan and 

Okuonghae (2019)
β 6,55-15 Egonmwan and 

Okuonghae (2019)
η1 0,5 Egonmwan and 

Okuonghae (2019)
η2 0,7 Egonmwan and 

Okuonghae (2019)
η 0,3 Egonmwan and 

Okuonghae (2019)
c 1,2 Egonmwan and 

Okuonghae (2019)
α 1 Egonmwan and 

Okuonghae (2019)
b1 0-0,7 Egonmwan and 

Okuonghae (2019)
b2 0-0,8 Egonmwan and 

Okuonghae (2019)
b3 0-1 Egonmwan and 

Okuonghae (2019)
r0 0,5 Egonmwan and 

Okuonghae (2019)
r1 1,5 Egonmwan and 

Okuonghae (2019)
r2 0,5 Egonmwan and 

Okuonghae (2019)
k 0-0,0005 Egonmwan and 

Okuonghae (2019)
K 1,6 Egonmwan and 

Okuonghae (2019)

δ1
0,413 Egonmwan and 

Okuonghae (2019)

δ2
0,139 Egonmwan and 

Okuonghae (2019)

δ3
0,3 Egonmwan and 

Okuonghae (2019)
q 0,4 Egonmwan and 

Okuonghae (2019)
ε 0,6 Apriliani (2016)

Next, the disease free equilibrium of the model (1) is 
T0 (S, V, E1, E2, E3, I, Dr, DP, T) = (S0, V0, 0, 0, 0, 0, 0, 0, 0), 
which is as follows:

                    (11)

The local asymptotic stability of disease-free 
equilibrium is shown by determining the eigenvalue from 
the Jacobi matrix. Based on the procedure in Anderson and 
May (1991), the basic reproductive number related to the 
system (1) is

        (12)

Where, those are a11=(r1+ δ2+ μ), a22=(r2+ δ3+ μ), 
a33=(γεN+A(1-ρ)), a44=(k+α+ μ), a55=(kn+α+ μ), 
a66=(c+ μ), a77=(γ+ μ), a88=(δ1 +K+ μ), and a99=r0+ μ.

Lemma 3.2 The disease-free equilibrium (T0) in 
equation (1) is a local asymptotic if it is R0<1. Meanwhile, 
it is unstable if it is R0>1 (Egonmwan & Okuonghae, 2019).

Proof  With the Jacobi matrix on the system around  
T0 and eigenvalue, the characteristic equation is produced 
as follows:

(J11-λ)(J22-λ)(J44-λ)(J99-λ)

(λ5+a1λ
4+a2λ

3 +a3λ
2+a4λ+ a5) = 0    (13)

So, it obtains:

λ1=J11= −(γ+μ), λ2=J22= −μ, λ3=J44= −(r0+μ), 

and λ4=J99= −μ         (14)

Five eigenvalues are used to complete the following 
equation form with Routh-Hurwitz criteria (Edelstein-
Keshet, 2005). It is as follows:

(λ5+a1λ
4+a2λ

3 +a3λ
2+a4λ+ a5) = 0    (15)

With using Routh-Hurwitz criteria, T0 will be stable 
if it fulfills these conditions:

a1>0, a2>0, a3>0, a4>0, a5>0,

a1 a2 > a3, a1 a2 a3 + a1 a5 > a3
2+ a1

2a4,

α1 α2 α3 α4 + α2 α3 α5+ 2α1 α4 α5 > α5
2+ α3

2α4+

α1
2α4

2+α1α2
2α5      (16)

So, using the parameter values in Table 2 fulfill these 
conditions. Thus, the disease-free equilibrium (T0) is stable 
asymptotic local if it is R0<1.

Moreover, the disease-endemic equilibrium of the 
model (1) is as follows:

                 (17)

                  (18)

            (19)

       (20)

      (21)
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        (22)

       (23)

        (24)

                                         (25)

Lemma 3.3 The disease-endemic equilibrium (T*) in 
model (1) is local asymptotic if it is R0>1.

Proof  Lemma 3.3 is proven by using theorem of 
Castillo-Chavez and Song (2004). Let φ = β  be a bifurcation 
parameter at R0=1  and x1= S, x2= V, x3= E1, x4= E2, x5= E3, 
x6= I, x7= Dr, x8= Dp, x9= T. Then, it is:

 
        (26)

Based on Jacobi matrix (J*), disease free equilibrium 
(T0) has nine eigenvalues. The one and eight eigenvalues 
are negative if it is R0 = 1 or φ = φ*. Using Centre Manifold 
Theory (Dushoff, Huang, & Castillo-Chavez, 1998), J* has 
a right eigenvector given by u=(n1, u2, u3, u4, u5, u6, u7, u8, 
u9) where,

Similarly J* has left eigen vector v=(v1, v2, v3, v4, v5, 
v6, v7, v8, v9)  in satisfying u.v = 1 , with:

v1 = v2= 0       (27)

                        (28)

    (29)
    
        (30)

   

Based on the theorem of Castillo-Chavez and Song (2004), 
it evaluates disease-free equilibrium (T0) with φ=φ*. It 
associates with bifurcation coefficients (a and b) given by:

       
                                                     (31)

                                             (32)

So it becomes:

        (33)

                   (34) 
       
Where, 

Q11= u1u6 + u1u7η1 + u1u8η2− u1u6b3− u1u7η1b3− u1u8η2b3

Q22= b1(u4 u6 + u4u7η1 + u4u8η2,

Q33= b2(u5 u6 + u5u7η1 + u5u8η2,

Q44= (u2 u6 + u2u7η1 + u2u8η2

The value of Q22, Q33, and b are positive. Then,  
Q44 is negative for all biologically feasible parameters. 
Meanwhile, the value of α depends on the parameter values 
used. If the number is exogenous re-infection (b1, b2, b3) is 
a positive number that is large enough. The positive part 
dominates the negative part so that there will be a  backward 
bifurcation in the equation model (1) (Esmail, Barry, Young, 
& Wilkinson, 2014).

This study leads to a special case, namely ignoring 
the number of reinfection exogen (b1= b2 = b3=0) so that 
it does not occur backward bifurcation due to exogenous 
reinfection as has been done by several previous researchers 
Egonmwan and Okuonghae (2019) and Okuonghae and 
Omosigho (2011).  Thus, the value is as follows:

                                                    (35)

When it is b1= b2 = b3=0, it obtains a<0, b>0. 
According to Castillo-Chaves theorem, φ changes from 
negative to positive, so T0 changes its stability from stable 
to unstable. Similarly, the negative fixed point of unstable 
changes to positive and stable local asymptotic.

Moreover, the researchers conduct a sensitivity 
analysis for all the parameters in the treatment model (1). 
It uses the three active populations for the simulation and 
basic reproduction number (R0) as the response function. 
Sensitivity analysis of R0 aims to determine the parameters 
regarding their influences on R0. Numerical simulation 
of sensitivity using parameters values in Table 2 and the 
formula (Chitnis, Hyman, & Cushing, 2008) as follows:

                              
         (36)

Based on Table 3, it can be concluded that the 
parameters that have more influence for R0 are β, A, ρ, and 
γ. The human birth rate (A) is not an influential parameter. 
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However, the rate of transmission of the disease (β), a fraction 
of fast TB  progression (ρ), and the rate of vaccination 
in susceptible individuals (γ) are parameters that can be 
controlled to achieve a certain condition. A positive sign on 
the sensitivity index shows that if the parameter value is 
increased, the value of R0 will also increase. Meanwhile, 
the negative sign on the sensitivity index shows that if the 
parameter value is increased, the value of R0 will decrease.

Table 3 Sensitivity Index of Parameters

Parameter Sensitivity Index
B  1

q  −0,175252

η1  0,0958391

K  −0,283688

η2  0,406636

A 1 
ρ 1 
C 7,7 × 10-10 

K  4,2 × 10-8

n  −1,81 × 10-8

γ  −0,90009
E  3,6 × 10-8

r1  −0,086539

δ1  −0,202928

M  −0,123078

r2 −0,247286

   δ1  −0,00801928

δ1  −0,148371

A  −4,14 × 10-8

Next, the researchers analyze the effects of the 
disease transmission rate (β), vaccination (γ), and fraction of 
fast TB progression (ρ) on basic reproduction number. The 
β  value is changed with the fixed value of other parameters. 
Then, the basic reproduction number also changes. If it is 
β=6,55, it is R0 = 0,064. If it is β=8, it is R0 = 0,079. Then if it 
is β=10, it will be R0 = 0,098. This show that the greater the 
β value is, it will increase the basic reproductive number. 
The simulation can see in Figure 2. It shows that the greater 
β value is, the slower disease-free state will be. Each line 
will go to the point of remaining disease-free because the 
basic reproductive number values obtained are still at the 
level of R0<1.

The same thing also happens in applying ρ value 
which has a positive value of sensitivity index in Table 3. 
It is different with γ value. When γ is increased, the basic 
reproduction number will decrease. This happens because 
of the gamma sensitivity index value in Table 3. If it is 
γ=0,02 it will be R0=0,037. If there is γ=0,08, it will be 
R0=0,139. Then, if it is γ=0,2, it will be R0=0,06.

Figure 2 Effects of Disease Transmission Rate 
on Basic Reproduction Number
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Figure 3 Influence of Vaccination

Figure 3 shows that that if γ value increases, it will 
quickly reach the point of being free of disease. Each line 
will go to the point of remaining disease-free because the 
basic reproduction number is still at a level of R0<1. Based 
on the results of the sensitivity analysis, three parameters 
have a significant influence on the transmission of TB. 
These three parameters are the rate of transmission of 
disease, the individual who has fast progression on TB, and 
the rate of the vaccine.

IV. CONCLUSIONS

This research is a modification of the mathematical 
model from the transmission of TB by adding a vaccine. 
Vaccination is done by adding vaccine compartments to 
individuals who are given the vaccine in the susceptible 
compartment. This model is divided into nine different 
groups. Two fixed points of the model are disease-free 
equilibrium and disease-endemic equilibrium. Disease-
free equilibrium is locally stable asymptotic if the basic 
reproduction number is less than unity. Then, disease-
endemic equilibrium is locally stable asymptotic if the basic 
reproduction number is more than unity. The exogenous re-
infection are ignored (b1, b2, b3 = 0) because of the backward 
bifurcation phenomenon. Sensitivity analysis shows that 
the top three parameters that have influences of TB are the 
transmission rate (β), a fraction of fast TB progression (ρ), 
and the rate of vaccinating (γ). Thus, it is important to give 
the vaccine to prevent the spread of TB. This research can 
be continued by using real data in a certain area. The future 
research can consider the effect of the environment on the 
spread of disease.
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