
Copyright©2019

P-ISSN: 2087-1244
E-ISSN: 2476-907X

15

ComTech: Computer, Mathematics and Engineering Applications, 10(1), June 2019, 15-22
DOI: 10.21512/comtech.v10i1.5067

Distributed Rendering Based on Fine-Grained
and Coarse-Grained Strategy to Speed up Time

and Increase Efficiency of Rendering Process
Melki Sadekh Mansuan1 and Benfano Soewito2

1Computer Science Department, School of Computer Science, Bina Nusantara University
2Computer Science Department, BINUS Graduate Program - Master of Computer Science,

Bina Nusantara University
Jln. K.H. Syahdan No. 9, Jakarta Barat 11480, Indonesia

1melky23i@binus.edu; 2bsoewito@binus.edu

Received: 23rd October 2018/ Revised: 24th January 2019/ Accepted: 31st January 2019

How to Cite: Mansuan, M. S., & Soewito, B. (2019). Distributed Rendering Based on Fine-Grained and Coarse-Grained
Strategy to Speed up Time and Increase Efficiency of Rendering Process. ComTech: Computer, Mathematics and

Engineering Applications, 10(1), 15-22. https://doi.org/10.21512/comtech.v10i1.5067

Abstract - The purpose of this research was to solve
several problems in the rendering process such as slow
rendering time and complex calculations, which caused
inefficient rendering. This research analyzed the efficiency
in the rendering process. This research was an experimental
study by implementing a distributed rendering system with
fine-grained and coarse-grained parallel decomposition
in computer laboratory. The primary data used was the
rendering time obtained from the rendering process of
three scenes animation. Descriptive analysis method was
used to compare performance using speedup and efficiency
of parallel performance metrics. The results show that the
distributed rendering method succeeds in increasing the
rendering speed with speedup value of 9,43. Moreover,
the efficiency of processor use is 94% when it is applied to
solve the problem of slow rendering time in the rendering
process.

Keywords: distributed rendering, fine-grained strategy,
coarse-grained strategy, rendering process

I. INTRODUCTION

Today, three-dimensional (3D) animations are
widely used in broadcasting, advertisement, and movie
industry. The process of generating 3D animation movies
in accordance with the needs of the industry requires an
understanding of production pipeline (Cantor & Valencia,
2004). The animation is produced by sequent images. Each
image is generated by rendering, which is the process of
generating an idealistic image from a geometric 3D model
and various graphics input data such as texture, material,
color and light (Glez-Morcillo, Vallejo, Albusac, Jiménez,
& Castro-Schez, 2011).

Rendering is the process of generating an image from
a model or calling a scene, which is done through a computer
program. A scene file contains an object of geometry

information, viewpoints, textures, lighting, and shadows.
Then, it becomes the description of the virtual scene. The
data will be processed in the rendering program to a digital
image or raster image. Although rendering techniques
vary, in general, the challenge is to produce images of
two-dimensional (2D) representations of 3D stored in the
file scene. It is also depicted in a pipeline graphics on the
device rendering, such as Graphics Processing Unit (GPU)
(Akenine-Möller, Haines, & Hoffman, 2008).

The parallel technique is the right solution when
rendering performance becomes an issue. The applications
such as real-time simulation, animation, virtual reality,
photorealistic images, and scientific visualization have
leveraged the use of parallelism to improve rendering time.
Parallel rendering has been applied in almost all image-
making techniques used in computer graphics. It includes
surface rendering and polygon, terrain, volume, ray-tracing,
and radiosity. Even though the needs and approaches for
each technique are different, there are some important
concepts in understanding how parallelism applies in
common rendering problems.

Parallel computing is a technology that has been
developed. Its use ranges from the need for calculations
in the laboratory of nuclear physics, the simulation of
spacecraft, and weather forecasts. Parallel computing is
the use of a collection of computer resources together to
solve computing problems (Culler, Singh, & Gupta, 1999).
Fundamentally, parallel computers divide the problem into
small to be done by each Central Processing Unit (CPU)
at the same time (concurrent). This principle is known as
parallelism.

Decomposition or division of workload is
fundamental to parallel algorithms. It is because the purpose
of parallel computing is to improve the process of solving
problems using shared computer resources. Based on the
division of objects, decomposition is divided into two: data
decomposition (domain) and function decomposition (Silva
& Buyya, 1999).

Decomposition can customize the problem handled as

16 ComTech: Computer, Mathematics and Engineering Applications, Vol. 10 No. 1 June 2019, 15-22

in the repetition processing or large data input iteration. The
used functions are very difficult to implement in parallel, so
the data decomposition is better to be used. For the problems
with various functions, function decomposition can be used.
The determination of this decomposition is very influential
on the performance or improvement of parallel computer
processes.

Another important point in parallel algorithms
is computation and communication comparisons. The
computation means the process performed on each processor
while communication is the process of information
exchange that occurs between processors. A problem with
simple functions generally provides a larger portion of
computation than communication or granularity is called
coarse grain. Meanwhile, a problem with many functions
results in the number of linear communication with the
amount of computation or Fine Grain Granularity.

Moreover, the parallel algorithm governs granularity.
It enables the efficiency of the process in both computation
and communication. The amounts of computation and
communication also fit to be applied in parallel computer
architecture.

Speeding up the rendering process is necessary since
rendering is a process that requires intensive computing and
time-consuming resources to create a 2D image (Sheharyar
& Bouhali, 2014). For example, in James Cameron’s film
“Avatar”, a frame takes an average of 40 hours of rendering
to produce 2D images. The film is approximately 2 hours
with a rendered frame over 216.000 frames and must be
rendered twice to produce stereoscopy images. Overall, it is
estimated that it takes 2.000 years if it is done using a single
computer (Glez-Morcillo & Vallejo, 2011).

To reduce the rendering time, each frame can be
computed in parallel or distributed to a group of computers
on the network. A type of parallel processing is called
Distributed Rendering (DR). Currently, there are many
researchers in addressing the problem of rendering with
parallel and distributed processing approaches. Sheharyar
and Bouhali (2014) implemented a framework for
building DR on cluster computers using a rendering farm
management software called Qube! and OpenPBS as cluster
management. Moreover, Wang, Zhao, Xu, and Liu (2013)
conducted research by implementing a sort-first algorithm
with adaptive dynamic load-balancing. It was able to solve
the load-unbalance problem in rendering by adjusting the
rendering load dynamically on the computer node.

Then, Hong, Wang, and Shi (2014) used a
performance-based approach for assigning work to DR
based on rendering time performance index and providing
a formula for evaluating rendering performance on nodes.
Similarly, Kantert, Spiegelberg, Tomforde, Hähner, and
Müller-Schloer (2015) introduced a Trusted Desktop
Grid (TDG) technical approach with resource sharing
to accelerate the rendering process among filmmaking
companies. The built system was based on trust, so that
from the security side, the grid could be isolated to avoid
attacks with little impact on performance.

DR can guarantee to reduce rendering time
significantly. However, it depends on the rendering task
assignment strategy which all rendering processes are not
delayed due to many complex and complicated rendering
tasks. Referring to the distribution of 3D frames or
animations that will be rendered, two main strategies can
be distinguished. There are fine-grained and coarse-grained
(Glez-Morcillo & Vallejo, 2011).

Fine-grained is a type of parallel decomposition in
which the processors of multiple computers are connected

in parallel to render on one frame only. Meanwhile, coarse-
grained is also a type of parallel decomposition. It renders
the animation frames in succession on a separate computer
processor. Thus, each CPU will compute the entire frame of
animation with the same configuration parameters on each
engine render.

In this research, a proposed method has been
presented to implement a distributed rendering method
using fine-grained and coarse-grained strategy. This
model consists of three components: manager, server, and
submitter or monitor. The manager manages the entire
process and distributes the work among all the computers
in DR environment. The server is the computer on the
network used to render frames of animation. It will contact
the manager and notify if it is ready to render. Then, the
submitter or monitor is a computer that must have a 3D
application. It is the machine that initiates a rendering job.

There are currently many researchers in rendering
farms for 3D animation. This concept has been implemented
in the movie business to accomplish photo-realistic images
approach by parallelism. Wald, Benthin, Dietrich, and
Slusallek (2003) built a render farm by using personal
computer cluster for interactive ray tracing system with
custom optimized renderers. However, it is only for non-
real-time rendering. In undergraduate research at the
University of Wisconsin-Eau Claire, Bui, Boettcher, Jaeger,
and Westphal (2013) utilized clusters for animation. In this
project, an input animation scene file was processed to
create a set of rendering jobs that generated a composed
2D images to form an animated movie. The system was
Distributed System for Automated Blender Rendering
(DSABR). DSABR rendered animations by sending a task
to a group of computers using the Work Queue framework.

Render farm framework belongs to (Patoli et al.,
2009). They adopted a Grid-based render farm “Condor”
to use idle resources of the enterprises’ machines when it
was free. The user required to install a small Condor slave
program to be part of a Grid.

Gooding, Arns, Smith, and Tillotson (2006) also
offered a render farm. The design of the render farm was
built upon the TerraGrid network. TerraGrid was a large grid
computing architecture contributed mainly by universities.
The problem faced was about the communication of
master controllers and the worker computers. To reduce
this problem, they used Condor. The other problem was
the security of the system. To deal with this problem, a
submission phase was designed having authentication and
encryption.

On the other hand, there is also open source render
farm such as DrQueue by adopting almost all renderers
for distinct users, and mainly targeting the service quality.
Moreover, there are commercial platforms including Qube,
Deadline, and others. Those offer the system management
to render farms that support managing user accounts and
render fee (Fang, Zhao, & Wang, 2009).

On the other hand, remote render farm such as
RenderRocket has exploit of a computing resource in a
global online service environment. This method uses Grid
or volunteer computing. Performing such remote rendering
systems must consider design network interface and
handle data access in this architecture (Anderson, 2004).
The presented framework in this research claims that all
render farm features can be provided at the same time. The
preferred 3D software is open source Blender by the Script
Generator feature. Theoretically, all 3D software can be
integrated into this framework.

17Distributed Rendering Based..... (Melki Sadekh Mansuan and Benfano Soewito)

The purpose of this research is to implement the
distributed rendering method with fine-grained and coarse-
grained strategies to increase rendering time and efficiency
of processor use. It is expected to become a solution in
production process of an animation project. Thus, the
product can be done on time.

II. METHODS

Figure 1 is the architecture of the distributed rendering
system. In this system, the machine manager acts as a
network manager. It is the manager’s job to accommodate
the efforts of all other machines in the distributed rendering
environment. A rendering server is a machine on the network
used to render frames of animation. It contacts manager and
informs that this machine is ready to render. The rendering
server starts 3ds Max when the manager sends a frame to
be rendered. A submitter is a machine that must have an
authorized copy of 3ds Max running. It initiates a rendering
job. This machine also has a function as a monitor. It checks
the current state of jobs that are rendering or that have been
queued. Then, it can use schedule the rendering time.

The monitor can get the valuable information
pertaining to all the jobs in the render queue. The researchers
use a file server to tell 3ds Max where it can find the
information to render a scene. The 3ds Max must find the
location of textures and other information and know where
to put each frame that it renders.

The researchers implement a network model in
client-server and use Transmission Control Protocol/Internet
Protocol (TCP/IP) to handle network communication. Then,
Server Message Block (SMB) protocol for the file server
that acts as network file sharing.

A fine-grained strategy will be applied to the
manager that will assign rendering servers to render one
frame simultaneously. If there are ten rendering servers, one
frame will be divided into sliced images, and the finished
slice will be composed into one image. A fine-grained
strategy workflow can be seen in Figure 2.

The workflow of fine-grained parallel decomposition
strategy applied is as follows. First, the manager receives
a render job submitted by the submitter with rendering
settings using a fine-grained strategy. Second, the manager
will assign tasks to render servers connected in the render

farm to render by splitting the frames into chunks according
to the number of render servers. Third, if the number of
render servers is ten, the first stage of the ten render servers
will render the frame fragments. Then, the second stage of
the rendering server will be assigned to merge the finished
pieces rendered into one rendered or intact image. If the
number of frames to be rendered is more than one, the
frames will be animated. Then, this process will be repeated
until all the frames are finished in the rendering.

Moreover, a coarse-grained strategy will also be
applied. The manager will assign each render server to
render one frame simultaneously. If there are ten rendering
servers, each server will render one frame. Thus, there are
ten rendered frames simultaneously. If there are hundred
frames in one animation, each server renders ten frames.

The workflow of coarse-grained decomposition
strategy in Figure 3 is as follows. First, the manager
receives a render job submitted by the submitter with
rendering settings using a coarse-grained strategy. Second,
the manager will assign tasks to render servers connected in
render farm to render by dividing each frame according to
the number of render servers. Third, if many render servers
are n, the number of n servers will render many n frames.
Moreover, if the number of frames to be rendered is more
than one like frames of animation, the rendering process
with many servers will run together until the number of
rendered frames ends.

The researchers conduct performance analysis to
compare time rendering between existing and proposed
methods. Rendering time is evaluated by the speedup and
efficiency function equation (Eager, Zahorjan, & Lazowska,
1989) as follows:

 (1)

Where, S(n) is speedup, T(1) is time rendering single
computer, and T(n) is time rendering (n) node. Meanwhile,
the efficiency parameter is defined as the average use of
n processors dedicated to rendering. The equation is as
follows:

 (2)

Figure 1 Architecture of the Distributed Rendering System

18 ComTech: Computer, Mathematics and Engineering Applications, Vol. 10 No. 1 June 2019, 15-22

The E(n) is the efficiency of (n) processor, S(n) is
speedup, and n is the number of n processor.

Start

User sends a job with
fine-grained mode

Job file gets zipped &
copied to Manager

Manager recieves the
metadata (ZIP & XML)

Assigns the job to
servers

Launch 3ds Max &
loads the MAX files

Rendering a slice of
image

Servers idle?
Yes

Combined final image

StopNo

Figure 2 DR Fine-Grained Procedure

Start

User sends a job with
coarse-grained mode

Job file gets zipped &
copied to Manager

Manager recieves the
metadata (ZIP & XML)

Assigns the job to
servers

Launch 3ds Max &
loads the MAX files

Rendering a frame of
animations

Servers idle?
Yes

Stop

No

Figure 3 DR Coarse-Grained Procedure

Table 1 Specification of Animations

Simple Medium Complex

Scene Name Wiring-Breaker Vortex-Tornado Robby vs Fly
Number of Frames 301 301 341
Animation Speed 30 30 30
Resolution 800 x 600 800 x 600 800 x 600
Polygon 23914 306 112899
Vertex 13531 287 57188
Light 3 1 2
Particle System - Vortex Space Wrap -
Number of Particles - 100000 -
Camera 1 1 1
Compression JPEG JPEG JPEG
Renderer Scanline Scanline Mental Ray

 (a) (b) (c)

Figure 4 The Sample Frames of Animations
(a)Wiring-Beaker, (b) Vortex-Tornado, and (c) Robby vs Fly

19Distributed Rendering Based..... (Melki Sadekh Mansuan and Benfano Soewito)

III. RESULTS AND DISCUSSIONS

The experiments are conducted in a computer
laboratory using a computing platform based on Intel
Xeon W3520 2.67 GHz CPU, 4 GB RAM, and Microsoft
Windows 7 Professional 64-bit with SP1 operating system.
The distributed rendering is performed using Autodesk
Backburner since it is a standard tool for handling rendering
and compiling tasks for a range of software tools developed
by Autodesk.

In this experiment, three scenes of animation that
comes with Autodesk 3ds Max are given in Table 1 and
Figure 4. These scenes have different complexity including
simple, medium, and complex animation.

The researchers conduct experiments on three scenes
by rendering using Local, Distributed Rendering with Fine-
Grained (DR FG), and Distributed Rendering with Coarse-
Grained (DR CG) method. The results of rendering time are
reported in Table 2. The first rendering is conducted using
Local (single computer). Then, DR FG with one additional
server is registered. For DR CG process is the same with
DR FG.

To verify a significant difference, the results of all
methods are compared. The researchers perform the speedup
and efficiency comparison on each method. Moreover, the
researchers calculate the speedup using equation 1 and
efficiency using equation 2. Then, the researchers compare
the results as shown in Tables 3 and 4.

Table 2 The Results of Rendering Time

Method
Rendering Time (sec)

Wiring-
Beaker

Vortex-
Tornado Robby vs Fly

Local 716 2612 7054
DR FG 2 857 1575 4262
DR FG 3 692 1150 3109
DR FG 4 611 961 2441
DR FG 5 540 880 2038
DR FG 6 522 794 1864
DR FG 7 509 742 1734
DR FG 8 503 684 1586
DR FG 9 497 661 1490
DR FG 10 455 635 1387
DR CG 2 321 1394 3531
DR CG 3 251 922 2362
DR CG 4 178 713 1792
DR CG 5 158 572 1453
DR CG 6 135 477 1218
DR CG 7 120 421 1051
DR CG 8 112 409 922
DR CG 9 110 413 824
DR CG 10 105 378 748

Table 3 Speedup Comparisons

Method
Speedup

Wiring-
Beaker

Vortex-
Tornado Robby vs Fly

Local 1,00 1,00 1,00
DR FG 2 0,84 1,66 1,66
DR FG 3 1,03 2,27 2,27
DR FG 4 1,17 2,72 2,89
DR FG 5 1,33 2,97 3,46
DR FG 6 1,37 3,29 3,78
DR FG 7 1,41 3,52 4,07
DR FG 8 1,42 3,82 4,45
DR FG 9 1,44 3,95 4,73
DR FG 10 1,57 4,11 5,09
DR CG 2 2,23 1,87 2,00
DR CG 3 2,85 2,83 2,99
DR CG 4 4,02 3,66 3,94
DR CG 5 4,53 4,57 4,85
DR CG 6 5,30 5,48 5,79
DR CG 7 5,97 6,20 6,71
DR CG 8 6,39 6,39 7,65
DR CG 9 6,51 6,32 8,56
DR CG 10 6,82 6,91 9,43

Table 4 Efficiency Comparisons

Method
Efficiency (%)

Wiring-
Beaker

Vortex-
Tornado Robby vs Fly

Local 100 100 100
DR FG 2 42 83 83
DR FG 3 34 76 76
DR FG 4 29 68 72
DR FG 5 27 59 69
DR FG 6 23 55 63
DR FG 7 20 50 58
DR FG 8 18 48 56
DR FG 9 16 44 53
DR FG 10 16 41 51
DR CG 2 112 94 100
DR CG 3 95 94 100
DR CG 4 101 92 98
DR CG 5 91 91 97
DR CG 6 88 91 97
DR CG 7 85 89 96
DR CG 8 80 80 96
DR CG 9 72 70 95
DR CG 10 68 69 94

20 ComTech: Computer, Mathematics and Engineering Applications, Vol. 10 No. 1 June 2019, 15-22

In the first calculation, the researchers compare the
speedup value for Wiring-Beaker scenes. DR FG method
has good speedup compared to Local method (one server).
The lowest value of speedup is 1,06 (two servers), and
the highest is 1,86 (ten servers). For DR CG, the lowest
speedup value is 2,23 (two servers), and the highest one is
6,82 (ten servers).

From the results, it can be seen that DR FG for the
process of rendering simple animations (Wiring-Beaker) on
many different servers can improve rendering performance
by utilizing the processor even though it is not maximized.
It is explicitly seen that this animation sample is very
simple. However, the large numbers of rendering processes
cause a large amount of communication occurring between
master and server rendering. If the scenario uses DR
FG 5, the master assigns each frame to be rendered by
five servers simultaneously. This means that there are five
communications in one rendered frame. Thus, for this
simple animation that has 301 frames, there will be 1.505
communications on five servers and 3.010 communications
on ten servers.

The next analysis is the efficiency of processor usage
on each server. The calculation results can be seen in
Table 4. For DR FG method, the highest efficiency value
is 42% (two servers), and the lowest value is 16% (nine
and ten servers). For DR CG the highest efficiency value
is 112% (two servers), and the lowest value is 68% (ten
servers).

Figure 5 Speedup Comparison
of Wiring Beaker Animation

The speedup comparison graph of DR FG and CG
method for simple animation (Wiring-Beaker) is shown in
Figure 5. From the graph, it is known that speedup of DR
FG has changed stagnantly in every increase in the number
of servers. Unlike DR CG which has an increase in speedup
proportional to the increase in the number of servers, there
is a saturation starting from the number of servers from
seven to ten.

Figure 6 The Efficiency Comparison
of Wiring-Beaker Animation

Comparison of efficiency for DR method with FG and
CG strategies in the process of rendering simple animations
is shown graphically in Figure 6. It shows that the efficiency
value obtained by DR CG method is greater than DR FG
method. This is an important note that DR FG method has
not been able to maximize the distributed rendering process
even with a large number of servers. Meanwhile, DR CG
method can optimally perform the distributed rendering
processes. It is because the utilization of processors on each
used server has an average value of efficiency above 50%.

In the next calculation, the researchers compare
the speedup value for Vortex-Tornado scenes. The
implementation of DR FG method has a good speedup
compared to Local method (one server). The lowest speedup
value is 1,87 (two servers), and the highest value is 4,60 (ten
servers). For DR CG method, the lowest speedup value is
1,87 (two servers). It is equal to the speedup value of the DR
FG. Then, the highest value is 6,91 (ten servers).

From speedup results, it is found that the
implementation of DR FG for medium animation rendering
process on many different servers can improve the rendering
performance by utilizing the processor on the server even
though it is not maximal. Although this animation has a
small number of polygons, there are 100.000 particles.
Thus, it causes the rendering process to be computationally
intensive. There is a large amount of communication
occurring between master computer and servers. With
scenario using DR FG 2, the master will assign each frame
to be rendered by two servers simultaneously. This means
that two communications occur in one rendered frame. For
this medium animation that has 301 frames rendered, 602
communications will occur for two servers. Then, 3.010
communications are for ten servers. This condition proves
that DR FG has a communication ratio that is greater than
the computational process or overhead.

Meanwhile, the implementation of DR CG for the
same animation can have better speedup than DR FG. The
maximum speedup value is 6,91 (ten servers), and the
minimum is 1,87 (two servers). However, the speedup is
saturated on the number of servers 8, 9, and 10. So, speedup
value obtained cannot reach its linear value. For DR CG 2
scenario, two frames will be rendered simultaneously for
one-time communication between master and two servers.
Thus, only 151 communications occur for rendering 301
frames. In 31 communications for DR CG 10 scenario, the
number of servers is ten. This proves that DR CG has a ratio
that is more computational than communication.

The next analysis of each DR method is to calculate
the efficiency of processor usage on each node, the results
can be seen in Table 4. For DR FG method, the highest
efficiency value is 83% (two servers), and the lowest value
is 41% (ten servers). For DR CG, the highest efficiency
value is 94% (2 servers), and the lowest value is 69% (10
servers).

Figure 7 Speedup Comparison
of Vortex-Tornado Animation

21Distributed Rendering Based..... (Melki Sadekh Mansuan and Benfano Soewito)

Speedup comparison of the DR FG and CG method
for the graphical animation rendering process (Vortex-
Tornado) is graphically shown in Figure 7. From the graph,
it is known that speedup from the implementation of DR
FG tends to increase in every increase in the number of
servers. However, the increase is not directly proportional
to the increase in the number of servers. In contrast to the
implementation of DR CG which has a trend of increasing
speedup linearly to the increase in the number of servers,
there is a saturation starting from eight to ten servers.

Figure 8 The Efficiency Comparison
of Vortex-Tornado Animation

Efficiency comparison chart for implementation
DR FG and CG in the rendering process of the animation
medium (Vortex-Tornado) is shown in Figure 8. From
the graph efficiency value obtained by DR CG method,
it shows it is better than DR FG. It should be noted that
the implementation of DR FG method has not been able
to maximize the distributed rendering process even with a
large number of servers. Although the efficiency looks good
with the value of 83% in two servers, compared to CG DR
with the same number of servers, the result is better with
the value of 94%. In general, DR CG method can perform a
maximally distributed rendering process, because the use of
processors used has an average value above 60%.

Last, the researchers compare speedup value for
Robby vs Fly scenes. The implementation of the DR FG
method has a good speedup compared to Local method
(one server). The lowest value is 1,77 (two servers), and the
highest value is 5,38 (ten servers). For the implementation
of DR CG method, the lowest speedup value is 2,00 (two
servers), and the highest speed is 9,43 (ten servers). The
speedup and efficiency values for all rendering processes
can be seen in Tables 3 and 4.

From the speedup results, it shows that DR FG for
complex animation in the rendering process on a number
of different servers can improve rendering performance by
utilizing the processor. However, it has not been utilized
maximally as it is the same as the previous animation
samples. For complex animation samples with 341 frames,
it causes a large amount of communication that occurs
between master and servers. If the number of the server
is two, the master will assign each frame to be rendered
by two servers simultaneously. This means that two
communications occur in one rendered frame. So, for this
sample that has 341 frames, 682 communication will occur
for the number of servers is 2 and 3.410 communications for
the number of servers is 10. This means that communication
is greater than the computing process.

Meanwhile, the implementation of DR CG has
a better speedup than DR FG. The average of all values
almost reaches a linear value according to the addition of the
number of servers. This is because the DR CG can perform
an efficient rendering process with less communication
between the master computer and the server. With DR CG
2 scenario, two frames will be rendered simultaneously for
one-time communication between the master computer and
two servers. Thus, there are only 171 communications for
the rendering process in 341 frames. Moreover, it is only 35
communications with ten servers. This proves that DR CG
has a greater computational process than its communication.

Next, the analysis of each DR method is to calculate
the efficiency of processor usage on each node. The results
can be seen in Table 4. For the DR FG method, the highest
efficiency value is 88% (two servers), and the lowest value
is 19% (ten servers). For DR CG, the highest efficiency
value is 100% (two servers), and the lowest value is 94%
(ten servers).

Figure 9 Speedup Comparison
of Robby vs Fly Animation

The speedup comparison graph of DR FG and CG
method for the complex animation (Robby vs Fly) is shown
in Figure 9. From Figure 9, it is known that speedup of
DR FG tends to increase in every addition the number of
servers, although it is not significant. In contrast, in DR CG,
almost all speedup values are close to linear values.

Figure 10 Efficiency Comparison
of Robby vs Fly Animation

The efficiency comparison chart for implementation
DR FG and CG in the rendering process of the animation
complex (Robby vs Fly) is shown in Figure 10. It can be
seen that the efficiency value of DR CG method is greater
than DR FG. This chart proves that the implementation of

22 ComTech: Computer, Mathematics and Engineering Applications, Vol. 10 No. 1 June 2019, 15-22

DR FG method has not been able to maximize the processor
in the distributed rendering process although there are
many numbers of servers. Meanwhile, DR CG method can
maximize the processor for distributed rendering processes
and have an average value above 90% in this animation.

IV. CONCLUSIONS

Distributed rendering based on fine-grained
and coarse-grained strategy is proposed to improve the
performance of rendering in 3D animation. DR method
with fine-grained is good for animation rendering processes
at all levels of complexity. It can improve rendering
performance. However, it does not maximally utilize the
number of available servers. In this research, there are
ten servers. It can be seen from the maximum speedup
value obtained in complex animation samples. It is only
5,38, and the efficiency of processor usage is 88% in 10
servers. Meanwhile, the DR method with coarse-grained
for the entire rendering process in all three animations can
improve the rendering performance by almost reaching the
number of servers used. In the complex animation sample,
the maximum speedup value is 9,43, and the efficiency of
processor usage is 100% in 10 servers. For future research,
it is necessary to experiment on larger network coverage
such as Grid and Cloud networks. Moreover, the future
researchers can optimize the modeling process for animation
that can speed up rendering time.

REFERENCES

Akenine-Möller, T., Haines, E., & Hoffman, N. (2008).
Real-time rendering (Third edition). A K Peters/
CRC Press.

Anderson, D. P. (2004). Boinc: A system for public-
resource computing and storage. In Fifth IEEE/ACM
International Workshop on Grid Computing (pp.
4-10). https://doi.org/10.1109/GRID.2004.14

Bui, P., Boettcher, T., Jaeger, N., & Westphal, J. (2013,
September). Using clusters in undergraduate
research: Distributed animation rendering, photo
processing, and image transcoding. In 2013 IEEE
International Conference on Cluster Computing
(CLUSTER) (pp. 1-8). https://doi.org/10.1109/
CLUSTER.2013.6702634

Cantor, J., & Valencia, P. (2004). Inspired 3D short film
production. Course Technology Press.

Culler, D., Singh, J. P., & Gupta, A. (1999). Parallel
computer architecture: A hardware/software
approach. Gulf Professional Publishing.

Eager, D. L., Zahorjan, J., & Lazowska, E. D. (1989).
Speedup versus efficiency in parallel systems. IEEE
Transactions on Computers, 38(3), 408-423. https://
doi.org/10.1109/12.21127

Fang, C., Zhao, Y., & Wang, Z. (2009). Research and
design of a service management system for deadline
render farm. In 2009 International Conference on
Environmental Science and Information Application
Technology (Vol. 2, pp. 542-545). https://doi.
org/10.1109/ESIAT.2009.123

Glez-Morcillo, C., & Vallejo, D. (2011). Using expert
knowledge for distributed rendering optimization.
In International Conference on Computer Vision,

Imaging and Computer Graphics (pp. 3-16). https://
doi.org/10.1007/978-3-642-32350-8_1

Glez-Morcillo, C., Vallejo, D., Albusac, J., Jiménez, L., &
Castro-Schez, J. J. (2011, October). A new approach
to grid computing for distributed rendering. In 2011
International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (pp. 9-16). IEEE.
https://doi.org/10.1109/3PGCIC.2011.12

Gooding, S. L., Arns, L., Smith, P., & Tillotson, J.
(2006). Implementation of a distributed rendering
environment for the TeraGrid. In 2006 IEEE
Challenges of Large Applications in Distributed
Environments (pp. 13-21). https://doi.org/10.1109/
CLADE.2006.1652049

Hong, Z. G., Wang, Y. B., & Shi, M. Y. (2014). A
performance-based policy for job assignment under
distributed rendering environments. In Applied
Mechanics and Materials (Vol. 543, pp. 2949-
2952). https://doi.org/10.4028/www.scientific.net/
AMM.543-547.2949

Kantert, J., Spiegelberg, H., Tomforde, S., Hähner, J., &
Müller-Schloer, C. (2015). Distributed rendering
in an open self-organised trusted desktop grid. In
2015 IEEE International Conference on Autonomic
Computing (pp. 267-272). https://doi.org/10.1109/
ICAC.2015.66

Patoli, M. Z., Gkion, M., Al-Barakati, A., Zhang, W.,
Newbury, P., & White, M. (2009). An open source
grid based render farm for blender 3D. In 2009 IEEE/
PES Power Systems Conference and Exposition (pp.
1-6). https://doi.org/10.1109/PSCE.2009.4839978

Sheharyar, A., & Bouhali, O. (2014). A framework for
creating a distributed rendering environment on the
compute clusters. arXiv preprint arXiv:1401.0608.

Silva, L. M., & Buyya, R. (1999). Parallel programming
models and paradigms. High Performance Cluster
Computing: Architectures and Systems, 2, 4-27.

Wald, I., Benthin, C., Dietrich, A., & Slusallek, P. (2003).
Interactive ray tracing on commodity pc clusters.
In European Conference on Parallel Processing
(pp. 499-508). https://doi.org/10.1007/978-3-540-
45209-6_72

Wang, W., Zhao, Z. X., Xu, Q., & Liu, T. (2013). Design and
implementation of adaptive dynamic load balancing
distributed parallel rendering system based on sort-
first. In Advanced Materials Research (Vol. 798, pp.
693-698). https://doi.org/10.4028/www.scientific.
net/AMR.798-799.693

