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ABSTRACT 
 
 

This research examined the usage of the parametric method in comparing two or more means as 
independent group test, for instance, the Alexander-Govern (AG) test. The utilization of mean as the determinant 
for the center of distribution of variance diversity takes place in testing, and the test provides excellence in 
maintaining the amount of Type I error and giving immense sensitivity for a regular data. Unfortunately, it is 
ineffective on irregular data, leading to the application of trimmed mean upon testing as the determinant for the 
center of distribution under irregular data for two group condition. However, as the group quantity is more than 
two, the estimator unsuccessfully provides excellence in maintaining the amount of Type I error. Therefore, an 
estimator high in effectiveness called the MOM estimator was introduced for the testing as the determinant for 
the center of distribution. Group quantity in a test does not affect the estimator, but it unsuccessfully provides 
excellence in maintaining the amount of Type I error under intense asymmetry and unevenness. The application 
of Winsorized modified one-step M-estimator (WMOM) upon the Alexander-Govern testing takes place so that it 
can prevail against its drawbacks under irregular data in the presence of variance diversity, can eliminate the 
presence of the outside observation and can provide effectiveness for the testing on irregular data. Statistical 
Analysis Software (SAS) was used for the analysis of the tests. The results show that the AGWMOM test gave the 
most intense sensitivity under g = 0,5 and h = 0,5, for four group case and g = 0 and h = 0, under six group 
case, differing from three remaining tests and the sensitivity of the AG testing is said suffices and intense enough. 
 
Keywords: test power, Alexander-Govern (AG) test, the AGMOM test, AGWMOM test 
 
 
 

INTRODUCTION 
 
 

In this study, the power of the test for the Alexander-Govern (AG) test, the modified one-step 
M-estimator in Alexander-Govern (AGMOM), the Winsorized modified one-step M-estimator in 
Alexander-Govern (AGWMOM), t-test and the ANOVA test for two, four and six group case with 
each of the g- and h- distribution is investigated. 

 
The ANOVA has been applied in different fields of human endeavors, for instance in 

sociology, psychology, banking, marketing, medicine and agriculture as explained by Pardo et al. 
(1997). There are some hypotheses need to be considered for the ANOVA to perform properly, 
namely: normal distribution of the data, independent observations, and equality of the variance. 

 
As discussed by Yusof, Abdullah, Yahaya, and Othman (2011), the ANOVA is seriously 

affected by heterogeneity of the variance and irregular data. Due to these, the amount of Type I error is 
seen to be increased, and the power of the test reduces. 
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The issue of variance diversity has been discussed by different researchers, and there has been 
an introduction of the alternatives to the ANOVA (Wilcox, 1988; Algina, Oshima & Algina, 1994; Lix, 
Keselman, & Keselman, 1996). Welch (1951) introduced the Welch test to put an experiment proving 
a hypothesis on two sample groups of equaling averages. This test has been mentioned in many kinds 
of literature as a better alternative to the ANOVA (Algina, Oshima & Lin, 1994; Lix, Keselman, & 
Keselman, 1996). For variance diversity, the Welch test provides excellence in maintaining the amount 
of Type I error. 

 
It is advisable to use the parametric method that deals with heteroscedasticity. However, along 

with decreasing sample size and increasing group sizes, the Welch test unsuccessfully provides 
excellence in maintaining the amount of Type I error (Wilcox, 1988). James (1951) proposed a 
substitute for ANOVA, referred to as the James test. Sample means are weighed by this test which has 
been researched (Lix et al., 1996; Oshima & Algina, 1992; Wilcox, 1988). 

 
The James test cannot provide excellence in maintaining the amount of Type I error for a small 

sample size under irregular data. The Welch test and the James test are used for analyzing non-normal 
with variance diversity (Brunner, Dette & Munk, 1997; Krishnamoorthy, & Mathew, 2007; Wilcox & 
Keselman, 2003). 

 
The Alexander-Govern (1994) discovered the Alexander-Govern test as a decent option for the 

Welch test, the James test, and the ANOVA because its test statistic is not complicated to obtain as 
described by Schneider and Penfield (1997). The usefulness of Alexander-Govern test is present when 
there is a violation on variance diversity in the hypothesis. Unfortunately, there are also some 
drawbacks. Lix and Keselman, (1998), Myers (1998), Schneider and Penfield (1997) discovered that 
the Alexander-Govern test is only effective for a regular data and is not for an irregular data. Their 
findings reveal that the test unsuccessfully provides excellence in maintaining the amount of Type I 
error for a regular data. It occurred that the test is ineffective on irregular data caused by using 
averages as the determinant for the center of distribution. The average is an extremely sensitive 
measurement with 0% breakdown point, such that if one data value is altered, the value of the average 
will be badly affected. Therefore, the mean cannot handle any occurrence of outliers and defies 
normality. To solve this problem, Lix and Keselman (1998) introduced the trimmed mean, that has 
been used in various statistical tests that base the average as the determinant for the center of 
distribution. 

 
This shows that when trimmed mean is used, the problem of irregular data would be 

eliminated. Trimmed average replaces the usual average in the act of the determinant for the center of 
distribution in the Alexander-Govern test. Trimmed averages have been used by different 
researchers, because it is efficient and is reliable at providing excellence in maintaining the amount of 
Type I error (Keselman, Kowalchuk, Algina, Lix, & Wilcox, 2000; Luh, & Guo, 2005). 

 
Trimmed average has drawbacks, namely: (1) the consideration of trimming percentage must 

be a priority, which would require an elimination process, (2) the trimming needs to be done properly, 
so it won’t lose information, (3) trimmed mean can only handle the small size of values which are 
extreme (Yahaya, Othman, & Keselman, (2006). Researchers such as Abdullah, Yahaya, and Othman, 
(2007) provided a decent option to applying trimmed mean in Alexander-Govern test with an 
extraordinarily effective estimator, referred as the MOM. It was observed that for a skewed data, the 
MOM estimator provided excellence in maintaining the amount of Type I error. The MOM estimator is 
good at trimming data with extreme values with the consideration of characteristics of the distribution, 
whether it is slanted or not. 

 
When it was introduced in the Alexander-Govern test, it provided excellence in maintaining 

the amount of Type I error, for a regular or greatly slanted data, but fails to do so under intense 
asymmetry and unevenness (Othman et al., 2004). 
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The Winsorized MOM estimator was introduced in Alexander-Govern (AG) test to overcome 
the drawbacks of the test for irregular data, under variance diversity, in intense asymmetry and 
unevenness, to provide excellence in maintaining the amount of Type I error and to produce intensity 
in power for the test. 

 
 

METHODS 
 
 
The Alexander-Govern test was introduced by Alexander-Govern (1994). It serves a purpose 

for making a comparison of three or more groups where the utilization of the average as the 
determinant for the center of distribution for normal data under variance diversity takes place, but the 
test is ineffective on irregular data. The test statistic for the test is expressed with the use of the 
following procedures as listed below: 

 
Firstly, the researchers order the data set with population sizes of j (j = 1, …, J). For each of 

the datasets, the mean is calculated by using the formula: 
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Where ijX is defined as the known organized random sample with jn as the sample size of 

the observations. The utilization of the average as the determinant for the center of distribution takes 
place in the Alexander-Govern test (1994). The usual unbiased estimate of the variance is defined 
using the formula: 
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Where jX
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is used for estimating j with population j. The average’s standard error is defined by: 
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The weight )( jw for the group sizes with population j of the known organized random sample 

is defined, where  jw must be equal to 1. The weight )( jw for each of the independent groups is 

defined using the formula below: 
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The null hypothesis testing by the Alexander-Govern (1994) for the equality of mean, with 

variance diversity is defined as: 
Ho: µ1= µ2 = … = µj 

HA: µ1 ≠ µj 

For at least i ≠ j 
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There is a contradiction between the statement of the alternative hypothesis with the null 
hypothesis. The variance impact is determined from the estimation of overall mean in the groups 
which belong in the organized data distribution, is described in the formula: 
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Where, jw  it is the weight for each of the independent groups in the data distribution and jX


is the 

corresponding average in the independent groups in the known organized data sets. The t statistic for 
each of the independent groups is defined using: 
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Where jX


is the corresponding average in the independent group, 


 is defined as the overall 
grand average from each independent group with population j, the t statistic with nj – 1 degree of 
freedom is obtained. Where  is the degree of freedom for corresponding independent groups in the 
known organized data set. The t statistic defined for the corresponding groups are converted to 
standard normal deviates by using the Hill’s (1970) normalization approximation in the Alexander-
Govern (1994) technique. 

 
The formula is defined using: 
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Where 1 jj n , 5.0 ja  , 248ab           (9) 

The test statistic for the AG test is defined using: 
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The test statistic for the AG test with a significance level of α = 0,05 at )1( j chi-square 

degree of freedom is chosen. When the p-value obtained for the AG test is > 0,05, the test is 
ineffective. Otherwise, the test would be effective. 

 
Consider the known organized data sets to be defined as ,...,,, 21 nXXX with sample n and 

group sizes j. Then, the median is determined by designating the value in the middle of the 
observations. The MAD estimator sets the median of the absolute values of the differences between 

each of the score and the median. It is the median of MX j  , …, .MX n  Therefore, absolute 

deviation of the median )( nMAD  estimator is defined using the formula: 
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According to Wilcox and Keselman (2003), the constant value of 0,6745 is used for rescaling 
the MAD estimator with the aim of making the denominator to estimate  when sampling from a 
normal distribution. Outliers in a data distribution can be detected using either: 
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Where jX is defined as the known organized random sample, M  is the median of the 

ordered random samples and nMAD is the median absolute deviation about the median. The value of 

K is 2,24. This value was proposed by Wilcox and Keselman (2003) for detecting the appearance of 
outliers in a data distribution because it has a very small standard error when the data sample is from a 
normal distribution. 

 
Equation (12) and (13) are used for determining the appearance of outliers in a data 

distribution. In this research, there is a modification in which the average is utilized as the determinant 
for the center of distribution in the Alexander-Govern test, by replacing it with the Winsorized 
modified one-step M-estimator (WMOM) which utilizes mean as the determinant for the center of 
distribution of the test. 

 
The WMOM estimator is applied to the data distribution, where the outlier value involved is 

replaced or exchanged with its predecessor most adjacent to where the point of the outlier is situated. 
The WMOM estimator is defined using the formula below: 
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The WMOM estimator is used as a substitute for the average as the determinant for the center 

of distribution in the Alexander-Govern test, because: (1) it eliminates the presence of outliers from 
the data distribution, (2) it makes the Alexander-Govern test effective on irregular data. 
 
The Winsorized sample variance is defined by using: 
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Where jX


it is the known organized random sample and WMOMjX


, is the Winsorized MOM 
estimator for the Winsorized data distribution. The standard error of the WMOM is determined by 
bootstrapping. The procedure for obtaining algorithm bootstrapped for the standard error estimation is 
defined as: 

 
Firstly, selecting B independent bootstrap samples as defined below: 

,...,,, 21 Bxxx   where each of these random samples having n data values with replacement from 

x as defined below: 

,)...,,,( 21 nxxxx            (16) 
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The symbol )( shows that x is not the actual data of x, but it is a randomized or resampled 
version of x. When estimating the standard error of the bootstrap samples, the number of B should be 
within the interval of (25 – 200). According to Efron and Tibshirani (1998), 50 samples of the 
bootstrap sample is sufficient to give a reasonable estimate of the standard error of the MOM 
estimator. In this research, 50 samples of the bootstrap samples were used for estimating the standard 
error of the MOM estimator. 

 
Secondly, the copy of bootstrap which equals to each sampled bootstrap is expressed by using 

the formula below: 
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The weight jw for the Winsorized data distribution for the corresponding independent group 

is defined as: 
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2/1 is the total of the squared standard error inversion for all the independent 

groups in the known organized random sample. Where WMOMjeS 2 is the standard error of the 

Winsorized data distribution and is defined as: 
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The estimation of which the total mean in which the variance is weighted for the Winsorized data 
distribution for all the groups is defined by using: 
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Where jw is represented as the weight for the Winsorized data distribution and WMOMjX


is 

expressed as the mean of the Winsorized data distribution. The t statistic for each of the independent 
group is defined using the formula below: 
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Where WMOMjX


is the Winsorized MOM,


  is the total mean for the Winsorized data 

distribution and lastly, eS  is the standard error of the Winsorized data distribution. In the Alexander-

Govern technique, the jt value is transformed to standard normal by using the Hill’s (1970) 

normalization approximation and the hypothesis testing of the Winsorized sample variance of the 
WMOM estimator for j is expressed as: 
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The normalization approximation formula for the Alexander-Govern (AG) technique, with the 

use of the Winsorized Modified One Step M-estimator is expressed as: 
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The test statistic of the Winsorized Modified One Step M-estimator in the Alexander-Govern 

test (AGWMOM) for all the independent groups in the known organized random data sample is 
expressed using the formula below: 
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The test statistic for the AGWMOM test is obtainable using a chi-square distribution at 

05.0 the level of significance with J – 1 chi-square degree of freedom. The p-value is obtained 
from the standard chi-square distribution table. If the value of the test statistic for the AGWMOM is < 
0,05, the test is considered to be effective. Otherwise, the test is regarded as ineffective. 

 
In this research, five variables of different categories namely the balance condition of sample 

sizes, the equal of variance, group sizes, how they are paired and what kind the distribution is. 
Manipulation of variables is done to bring goodness and drawbacks of the AG test, the AGMOM test, 
the AGWMOM test, t-test and the ANOVA respectively. 
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Table 1 The Characteristics of the g- and h- Distribution 
 

g- (Non-negative 
content) 

h- (Non-negative 
content) 

Skewness Kurtosis Types of Distribution 

0 0 0 3 Standard normal  
0 0,5 0 1198,20 Symmetric heavy tailed 

0,5 0 1,81 18393,60 Skewed normal tailed 
0,5 0,5 120,10 18393,60 Skewed heavy tailed 

Source: Wilcox (1997) 
 
 

For the AG test, the AGMOM test, the AGWMOM test, the t-test and the ANOVA, a testing 
was done to a good deal of considerable 5.000 data sets to give a satisfactory result for the 
effectiveness of the test of the five tests respectively. To obtain the pseudo-random variates, SAS 
generator RANNOR (SAS Institute, 1999) was used with a nominal level of α = 0n05 for the analysis 
of the tests in this research. 

 
 

Table 2 The Research Design for Two Group Case for N = 40 
 

The g- and h- 
distribution 

Balanced and 
Unbalanced sample size 

Variance ratio Nature of Pairing 
Notations for 

the Conditions 
g = 0 and h = 0 20:20 1:1 Balanced condition C1 

1:36 Positive Pairing C2 
16:24 1:1  C3 

1:36 Positive Pairing C4 
36:1 Negative Pairing C5 

g = 0 and h = 0.5 20:20 1:1 Balanced condition C6 
1:36 Positive Pairing C7 

16:24 1:1  C8 
1:36 Positive Pairing C9 
36:1 Negative Pairing C10 

g = 0.5 and h = 0 20:20 1:1 Balanced condition C11 
1:36 Positive Pairing C12 

16:24 1:1  C13 
1:36 Positive Pairing C14 
36:1 Negative Pairing C15 

g = 0.5 and h = 0.5 20:20 1:1 Balanced condition C16 
1:36 Positive Pairing C17 

16:24 1:1  C18 
1:36 Positive Pairing C19 
36:1 Negative Pairing C20 

 
 

Table 3 Research Design for Four Groups Case for N = 80 
 

The g- and h- 
distribution 

Balanced and 
Unbalanced sample size 

Variance ratio Nature of Pairing 
Notations for 
the Nature of 

Pairing 
g = 0 and h = 0 20:20:20:20 1:1:1:1 Balanced condition C21 

1:1:1:36 Positive Pairing C22 
1:4:16:36 Positive Pairing C22 

 
 
 
 
 

15:15:15:30 
 
 
 
 

1:1:1:1  C24 
1:1:1:36 Positive Pairing C25 
36:1:1:1 Negative Pairing C26 

1:4:16:36 Positive Pairing C27 
36:16:4:1 Negative Pairing C28 
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Table 3 Research Design for Four Groups Case for N = 80 (Continued) 
 

The g- and h- 
distribution 

Balanced and 
Unbalanced sample size 

Variance ratio Nature of Pairing 
Notations for 
the Nature of 

Pairing 
g = 0 and h = 0.5 20:20:20:20 1:1:1:1 Balanced condition C29 

1:1:1:36 Positive Pairing C30 
1:4:16:36 Positive Pairing C31 

15:15:20:30 1:1:1:1  C32 
1:1:1:36 Positive Pairing C33 
36:1:1:1 Negative Pairing C34 

1:4:16:36 Positive Pairing C35 
36:16:4:1 Negative Pairing C36 

g = 0.5 and h = 0 
 
 
 

20:20:20:20 1:1:1:1 Balanced condition C37 
1:1:1:36 Positive Pairing C38 

1:4:16:36 Positive Pairing C39 
15:15:20:30 1:1:1:1  C40 

1:1:1:36 Positive Pairing C41 
36:1:1:1 Negative Pairing C42 

1:4:16:36 Positive Pairing C43 
36:16:4:1 Negative Pairing C44 

g = 0.5 and h = 
0.5 

20:20:20:20 1:1:1:1 Balanced condition C45 
1:1:1:36 Positive Pairing C46 

1:4:16:36 Positive Pairing C47 
15:15:20:30 1:1:1:1  C48 

1:1:1:36 Positive Pairing C49 
36:1:1:1 Negative Pairing C50 

1:4:16:36 Positive Pairing C51 
36:16:4:1 Negative Pairing C52 

 
 
 

Table 4 Research Design for Six Groups Case for N = 120 
 

The g- and h- 
distribution 

Balanced and 
Unbalanced sample size 

Variance ratio Nature of Pairing 
Notations for the 
Nature of Pairing 

g = 0 and h = 0 20:20:20:20:20:20 1:1:1:1:1:1 Balanced condition C53 
1:1:1:1:1:36 Positive Pairing C54 

1:4:4:16:16:36 Positive Pairing C55 
g = 0 and h = 0 2:4:4:16:32:62 1:1:1:1:1:1  C56 

1:1:1:1:1:36 Positive Pairing C57 
36:1:1:1:1:1 Negative Pairing C58 

1:4:4:16:16:36 Positive Pairing C59 
36:16:16:4:4:1 Negative Pairing C60 

g = 0 and h = 0.5 20:20:20:20:20:20 1:1:1:1:1:1  C61 
1:1:1:1:1:36 Positive Pairing C62 

1:4:4:16:16:36 Positive Pairing C63 
2:4:4:16:32:62 1:1:1:1:1:1  C64 

1:1:1:1:1:36 Positive Pairing C65 
36:1:1:1:1:1 Negative Pairing C66 

 1:4:4:16:16:36 Positive Pairing C67 
 36:16:16:4:4:1 Negative Pairing C68 
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Table 4 Research Design for Six Groups Case for N = 120 (Continued) 
 

The g- and h- 
distribution 

Balanced and 
Unbalanced sample size 

Variance ratio Nature of Pairing 
Notations for the 
Nature of Pairing 

g = 0.5 and h = 0 20:20:20:20:20:20 1:1:1:1:1:1 Balanced condition C69 
1:1:1:1:1:36 Positive Pairing C70 

1:4:4:16:16:36 Positive Pairing C71 
2:4:4:16:32:62 1:1:1:1:1:1  C72 

1:1:1:1:1:36 Positive Pairing C73 
36:1:1:1:1:1 Negative Pairing C74 

1:4:4:16:16:36 Positive Pairing C75 
36:16:16:4:4:1 Negative Pairing C76 

g = 0.5 and h = 
0.5 

20:20:20:20:20:20 1:1:1:1:1:1 Balanced condition C77 
1:1:1:1:1:36 Positive Pairing C78 

1:4:4:16:16:36 Positive Pairing C79 
 1:1:1:1:1:1  C80 

1:1:1:1:1:36 Positive Pairing C81 
 2:4:4:16:16:32:62 36:1:1:1:1:1 Negative Pairing C82 

1:4:4:16:16:36 Positive Pairing C83 
36:16:16:4:4:1 Negative Pairing C84 

Source: Ochuko, Abdullah, Zain & Yahaya (2015) 
 
 

It is necessary that the power be at more than 0,5 and can be considered adequate when it 
stands at the point of 0,8 and above (Murphy & Myors, 1998). The likelihood of successfulness will be 
at the quadruple amount of certainty if the power is 0,8. However, if the power sits on 0,9, then the 
successfulness would be at nonuple of the certainty. 
 

 
Table 5 Pattern of Variability for the Effect Size Index of 4 and 6 Groups 
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Source: Cohen, (1988) 
 

 
 

The power of the tests is represented graphically, where the y-axis corresponds to the power of 
the tests, and the horizontal axis represents the effect size index d for two groups condition and f for 
more than two group condition. The graph is used to show the trends of the power of the tests on the 
effect size index. According to scholars such as Murphy and Myors (1998) the power of a test must be 
above 0,5. It can be considered sufficient and high when its value is 0,8 and above. 

 
The graph shows those tests that have low power, sufficient and high power on the effect size 

indexes (d and f). In this research, the effect size index was used for analyzing the power of the test of 
the five different tests accordingly. 
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RESULTS AND DISCUSSIONS 
 

The Power of the Test for the AG Test, the AGMOM Test, the AGWMOM Test, the T-Test and 
the ANOVA 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Graphical representation of g = 0 and h = 0, of 
Power against Effect Size Index, 

for Two Group Condition 

Figure 2 Graphical Representation of g = 0 
and h = 0,5, of Power against the Effect Size Index, for Two 

Group Condition 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Graphical Representation of g = 0,5 
and h = 0, of Power versus 

Effect Size Index, for Two Group Case 

Figure 4 Power against Effect Size Index, for Two Groups 
Case, For g = 0 and h = 0 
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Figure 5 Power versus Effect Size Index, for Four 
Groups Condition, Under a Normal Distribution 

 

Figure 6 Power against Effect Size Index, for Four 
Group Case, For g = 0 and h = 0.5 
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Figure 7 Graphical Representation of g = 0,5 and 
h = 0, of Power against Effect Size Index, 

for Four Groups Condition 

Figure 8 Graphical Representation of g = 0,5 and 
h = 0,5, of Power against Effect Size Index, 

for Four Groups Condition 
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Figure 9 Graphical Representation of g = 0 and 
h = 0, of Power against Effect Size Index, 

for Six Group Condition 

Figure 10 Graphical Representation for g = 0 and 
h = 0,5, of Power against Effect Size Index, 

for six Groups Conditions 

 
C57 

C53 C54 

C55 C56 

C58 

C59 C60 

 

C61 C62 

C63 C64 

C65 C66 

C67 C68 



The Power of the Test … (Tobi Kingsley Ochuko, et al.) 321 

 

 

 

 

 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 Graphical Representation for g = 0,5 and 
h = 0, of Power against Effect Size Index, 

for Six Groups Condition 

Figure 12 Graphical representation for g = 0.5 and 
h = 0.5, of Power against Effect Size Index, 

for Six Groups Condition 
 
 
 

For g = 0 and h = 0, g = 0 and h = 0,5 and g = 0,5 and h = 0, under two group case, the power 
of the AG test, the AGMOM test, the AGWMOM test and the t-test is increasing as the effect size 
index is increasing. For g = 0,5 and h = 0,5, the AGWMOM test has the highest amount of power 
compared to the other three tests under this condition, the power of the AGWMOM test is above 0,8 
and is regarded as high and sufficient. In C37, C38, C39, C40 and C41, the power of the four tests is 
above 0.5 and is considered to be sufficient. In C53, C54 and C57, under six group case, for g = 0 and 
h = 0, the AGWMOM test has the highest power compared to the other three tests and the power of the 
test is said to be sufficient and high. For g = 0,5 and h = 0,5, in C77 and C78, under six group case, the 
AGWMOM test produced the highest power compared to the other three tests and the power of the 
test is referred to as sufficient and high. 
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CONCLUSIONS 
 
 

The AGWMOM test produced the highest power for g = 0,5 and h = 0,5, under four group 
case and g = 0 and h = 0, under six group case in comparison to the other three tests and the power of 
the test is referred to as sufficient and high. 
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