THE POWER OF THE TEST FOR THE WINSORIZED MODIFIED
ALEXANDER-GOVERN TEST

Tobi Kingsley Ochuko'; Suhaida Abdullah?; Zakiyah Zain®;
Sharipah Syed Soaad Yahaya*

1234 College of Arts and Sciences, School of Quantitative Sciences,Universiti Utara Malaysia
06010 UUM Sintok, Kedah, Malaysia
"tobikingsley@rocketmail.com

ABSTRACT

This research examined the usage of the parametric method in comparing two or more means as
independent group test, for instance, the Alexander-Govern (AG) test. The utilization of mean as the determinant
for the center of distribution of variance diversity takes place in testing, and the test provides excellence in
maintaining the amount of Type | error and giving immense sensitivity for a regular data. Unfortunately, it is
ineffective on irregular data, leading to the application of trimmed mean upon testing as the determinant for the
center of distribution under irregular data for two group condition. However, as the group quantity is more than
two, the estimator unsuccessfully provides excellence in maintaining the amount of Type | error. Therefore, an
estimator high in effectiveness called the MOM estimator was introduced for the testing as the determinant for
the center of distribution. Group quantity in a test does not affect the estimator, but it unsuccessfully provides
excellence in maintaining the amount of Type | error under intense asymmetry and unevenness. The application
of Winsorized modified one-step M-estimator (WMOM) upon the Alexander-Govern testing takes place so that it
can prevail against its drawbacks under irregular data in the presence of variance diversity, can eliminate the
presence of the outside observation and can provide effectiveness for the testing on irregular data. Statistical
Analysis Software (SAS) was used for the analysis of the tests. The results show that the AGWMOM test gave the
most intense sensitivity under g = 0,5 and h = 0,5, for four group case and g = 0 and h = 0, under six group
case, differing from three remaining tests and the sensitivity of the AG testing is said suffices and intense enough.
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INTRODUCTION

In this study, the power of the test for the Alexander-Govern (AQG) test, the modified one-step
M-estimator in Alexander-Govern (AGMOM), the Winsorized modified one-step M-estimator in
Alexander-Govern (AGWMOM), t-test and the ANOVA test for two, four and six group case with
each of the g- and h- distribution is investigated.

The ANOVA has been applied in different fields of human endeavors, for instance in
sociology, psychology, banking, marketing, medicine and agriculture as explained by Pardo et al.
(1997). There are some hypotheses need to be considered for the ANOVA to perform properly,
namely: normal distribution of the data, independent observations, and equality of the variance.

As discussed by Yusof, Abdullah, Yahaya, and Othman (2011), the ANOVA is seriously
affected by heterogeneity of the variance and irregular data. Due to these, the amount of Type I error is
seen to be increased, and the power of the test reduces.
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The issue of variance diversity has been discussed by different researchers, and there has been
an introduction of the alternatives to the ANOVA (Wilcox, 1988; Algina, Oshima & Algina, 1994; Lix,
Keselman, & Keselman, 1996). Welch (1951) introduced the Welch test to put an experiment proving
a hypothesis on two sample groups of equaling averages. This test has been mentioned in many kinds
of literature as a better alternative to the ANOVA (Algina, Oshima & Lin, 1994; Lix, Keselman, &
Keselman, 1996). For variance diversity, the Welch test provides excellence in maintaining the amount
of Type I error.

It is advisable to use the parametric method that deals with heteroscedasticity. However, along
with decreasing sample size and increasing group sizes, the Welch test unsuccessfully provides
excellence in maintaining the amount of Type I error (Wilcox, 1988). James (1951) proposed a
substitute for ANOVA, referred to as the James test. Sample means are weighed by this test which has
been researched (Lix et al., 1996; Oshima & Algina, 1992; Wilcox, 1988).

The James test cannot provide excellence in maintaining the amount of Type I error for a small
sample size under irregular data. The Welch test and the James test are used for analyzing non-normal
with variance diversity (Brunner, Dette & Munk, 1997; Krishnamoorthy, & Mathew, 2007; Wilcox &
Keselman, 2003).

The Alexander-Govern (1994) discovered the Alexander-Govern test as a decent option for the
Welch test, the James test, and the ANOVA because its test statistic is not complicated to obtain as
described by Schneider and Penfield (1997). The usefulness of Alexander-Govern test is present when
there is a violation on variance diversity in the hypothesis. Unfortunately, there are also some
drawbacks. Lix and Keselman, (1998), Myers (1998), Schneider and Penfield (1997) discovered that
the Alexander-Govern test is only effective for a regular data and is not for an irregular data. Their
findings reveal that the test unsuccessfully provides excellence in maintaining the amount of Type I
error for a regular data. It occurred that the test is ineffective on irregular data caused by using
averages as the determinant for the center of distribution. The average is an extremely sensitive
measurement with 0% breakdown point, such that if one data value is altered, the value of the average
will be badly affected. Therefore, the mean cannot handle any occurrence of outliers and defies
normality. To solve this problem, Lix and Keselman (1998) introduced the trimmed mean, that has
been used in various statistical tests that base the average as the determinant for the center of
distribution.

This shows that when trimmed mean is used, the problem of irregular data would be
eliminated. Trimmed average replaces the usual average in the act of the determinant for the center of
distribution in the Alexander-Govern test. Trimmed averages have been wused by different
researchers, because it is efficient and is reliable at providing excellence in maintaining the amount of
Type I error (Keselman, Kowalchuk, Algina, Lix, & Wilcox, 2000; Luh, & Guo, 2005).

Trimmed average has drawbacks, namely: (1) the consideration of trimming percentage must
be a priority, which would require an elimination process, (2) the trimming needs to be done properly,
so it won’t lose information, (3) trimmed mean can only handle the small size of values which are
extreme (Yahaya, Othman, & Keselman, (2006). Researchers such as Abdullah, Yahaya, and Othman,
(2007) provided a decent option to applying trimmed mean in Alexander-Govern test with an
extraordinarily effective estimator, referred as the MOM. It was observed that for a skewed data, the
MOM estimator provided excellence in maintaining the amount of Type I error. The MOM estimator is
good at trimming data with extreme values with the consideration of characteristics of the distribution,
whether it is slanted or not.

When it was introduced in the Alexander-Govern test, it provided excellence in maintaining

the amount of Type I error, for a regular or greatly slanted data, but fails to do so under intense
asymmetry and unevenness (Othman et al., 2004).
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The Winsorized MOM estimator was introduced in Alexander-Govern (AG) test to overcome
the drawbacks of the test for irregular data, under variance diversity, in intense asymmetry and
unevenness, to provide excellence in maintaining the amount of Type I error and to produce intensity
in power for the test.

METHODS

The Alexander-Govern test was introduced by Alexander-Govern (1994). It serves a purpose
for making a comparison of three or more groups where the utilization of the average as the
determinant for the center of distribution for normal data under variance diversity takes place, but the
test is ineffective on irregular data. The test statistic for the test is expressed with the use of the
following procedures as listed below:

Firstly, the researchers order the data set with population sizes of j (j = 1, ..., J). For each of
the datasets, the mean is calculated by using the formula:

X=45i"1 (D
n, '
Where X;; is defined as the known organized random sample with N; as the sample size of

the observations. The utilization of the average as the determinant for the center of distribution takes
place in the Alexander-Govern test (1994). The usual unbiased estimate of the variance is defined
using the formula:

SZJ:M, 2)

nj—l

Where X j is used for estimating j with population j. The average’s standard error is defined by:

5, = |21 3)

The weight (W J-) for the group sizes with population j of the known organized random sample

is defined, where ZWJ- must be equal to 1. The weight (Wj) for each of the independent groups is

defined using the formula below:

woo /S 4)
Y sty]

The null hypothesis testing by the Alexander-Govern (1994) for the equality of mean, with
variance diversity is defined as:
Hop=mp=...=y
Ha: i #
For at least i # j
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There is a contradiction between the statement of the alternative hypothesis with the null
hypothesis. The variance impact is determined from the estimation of overall mean in the groups
which belong in the organized data distribution, is described in the formula:

A J -
yzzj:lexj, (5)

Where, W; it is the weight for each of the independent groups in the data distribution and Xj is the

corresponding average in the independent groups in the known organized data sets. The t statistic for
each of the independent groups is defined using:

PR Il 6)

Where X j is the corresponding average in the independent group, # is defined as the overall

grand average from each independent group with population j, the t statistic with n; — 1 degree of
freedom is obtained. Where v is the degree of freedom for corresponding independent groups in the
known organized data set. The t statistic defined for the corresponding groups are converted to
standard normal deviates by using the Hill’s (1970) normalization approximation in the Alexander-
Govern (1994) technique.

The formula is defined using:

3 7 5 3
ZJ—:C+[C +3c] [4c +323C +24400 +8550]’ 7
b [10b” +8bc™ +1000b]
2.
Where, ¢~ [axlog, (1+ )", ®)
V.

]
Wherevjznj—l , azvj—O.S , b=48a 9)
The test statistic for the AG test is defined using:

A=Y 27 (10)

The test statistic for the AG test with a significance level of a = 0,05 at (j—1) chi-square
degree of freedom is chosen. When the p-value obtained for the AG test is > 0,05, the test is

ineffective. Otherwise, the test would be effective.

Consider the known organized data sets to be defined as X, , X, ,..., X, with sample n and

no
group sizes j. Then, the median is determined by designating the value in the middle of the
observations. The MAD estimator sets the median of the absolute values of the differences between

Y s |Xn -M | Therefore, absolute

each of the score and the median. It is the median of ‘X i~ M

deviation of the median (MAD,) estimator is defined using the formula:

MAD —_MAD (11)
0,6745
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According to Wilcox and Keselman (2003), the constant value of 0,6745 is used for rescaling
the MAD estimator with the aim of making the denominator to estimate ¢ when sampling from a

normal distribution. Outliers in a data distribution can be detected using either:

X. —M
M>_ K , (12)
MAD ,
Alternatively, when ‘X i—M ‘ <-K . (13)
MAD |

Where X ; is defined as the known organized random sample, M is the median of the

ordered random samples and MAD,, is the median absolute deviation about the median. The value of

K is 2,24. This value was proposed by Wilcox and Keselman (2003) for detecting the appearance of

outliers in a data distribution because it has a very small standard error when the data sample is from a
normal distribution.

Equation (12) and (13) are used for determining the appearance of outliers in a data
distribution. In this research, there is a modification in which the average is utilized as the determinant
for the center of distribution in the Alexander-Govern test, by replacing it with the Winsorized
modified one-step M-estimator (WMOM) which utilizes mean as the determinant for the center of
distribution of the test.

The WMOM estimator is applied to the data distribution, where the outlier value involved is
replaced or exchanged with its predecessor most adjacent to where the point of the outlier is situated.
The WMOM estimator is defined using the formula below:

J
_ boXo
WMOM = X wwvowj :M’ (14)
n

The WMOM estimator is used as a substitute for the average as the determinant for the center
of distribution in the Alexander-Govern test, because: (1) it eliminates the presence of outliers from
the data distribution, (2) it makes the Alexander-Govern test effective on irregular data.

The Winsorized sample variance is defined by using:

3 -
Z(Xj — X wmow )

S wmomj = 1= , (15)
n-1

Where X j it is the known organized random sample and X wmowm; , is the Winsorized MOM

estimator for the Winsorized data distribution. The standard error of the WMOM is determined by
bootstrapping. The procedure for obtaining algorithm bootstrapped for the standard error estimation is
defined as:

Firstly, selecting B independent bootstrap samples as defined below:

X*' x™ ... X*® where each of these random samples having N data values with replacement from
X as defined below:

X =(X 5 Xy 50005 X, ) (16)
Fo(X 0% enX, ), (17)
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The symbol (*) shows that X" is not the actual data of x, but it is a randomized or resampled

version of x. When estimating the standard error of the bootstrap samples, the number of B should be
within the interval of (25 — 200). According to Efron and Tibshirani (1998), 50 samples of the
bootstrap sample is sufficient to give a reasonable estimate of the standard error of the MOM
estimator. In this research, 50 samples of the bootstrap samples were used for estimating the standard
error of the MOM estimator.

Secondly, the copy of bootstrap which equals to each sampled bootstrap is expressed by using
the formula below:

O(b)=s(x*)b=1,2,...B. (18)
A 1 A
Estimation of t(F) use and the probability of — distributes F empirically. For each of the known
n
values is expressed as: X, ,i =1,2,...,Nn.

A
Thirdly, the bootstrap estimate of Sep (€) is estimated from the sample standard deviation of
the bootstrap replications that is expressed using:

e =(3.[00) -0/ (B-1)}'", (19)
b=1

B

Where Aé():Z: 6(b)/B and g=S(X*).

b=1

The weight W; for the Winsorized data distribution for the corresponding independent group

is defined as:

l/seZWMOMj (20)
3
Z 1/ Sezv\/MOMj
-1

J

Where Zl/ Sezwmow is the total of the squared standard error inversion for all the independent
j=1

- B

i

groups in the known organized random sample. Where SEZWMOMj is the standard error of the

Winsorized data distribution and is defined as:

2
S: wMOoMmj
S, “wmomj =———— Q1)

n;

The estimation of which the total mean in which the variance is weighted for the Winsorized data
distribution for all the groups is defined by using:

A J _
M ZZWJ- XWMOMj , (22)

j=1
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Where W; is represented as the weight for the Winsorized data distribution and Xwwmowj is

expressed as the mean of the Winsorized data distribution. The t statistic for each of the independent
group is defined using the formula below:

- A

= X wmomj — 4

i > (23)

SeWMOMj

Where Xwwmowmj is the Winsorized MOM, i is the total mean for the Winsorized data

distribution and lastly, S, is the standard error of the Winsorized data distribution. In the Alexander-
Govern technique, the t; value is transformed to standard normal by using the Hill’s (1970)

normalization approximation and the hypothesis testing of the Winsorized sample variance of the
WMOM estimator for 4; is expressed as:

Hotty =p,=...= i

Forj=(G=1,....,))
Hou it # 1

The normalization approximation formula for the Alexander-Govern (AG) technique, with the
use of the Winsorized Modified One Step M-estimator is expressed as:

[c®+3c] [4c” +33¢° +240c° +855¢]
ZWMOMj =C - 2 1
b [10b> +8bc* +1000b]

Biype
j

Where C=[axlog, (1+
1%
v,=n;-1,a=v;-0,5,b=48a’ (24)

3

The test statistic of the Winsorized Modified One Step M-estimator in the Alexander-Govern
test (AGWMOM) for all the independent groups in the known organized random data sample is
expressed using the formula below:

AGWMOM =Z;:1 Z *wnowm (25)

The test statistic for the AGWMOM test is obtainable using a chi-square distribution at
a =0.05 the level of significance with J — 1 chi-square degree of freedom. The p-value is obtained

from the standard chi-square distribution table. If the value of the test statistic for the AGWMOM is <
0,05, the test is considered to be effective. Otherwise, the test is regarded as ineffective.

In this research, five variables of different categories namely the balance condition of sample
sizes, the equal of variance, group sizes, how they are paired and what kind the distribution is.
Manipulation of variables is done to bring goodness and drawbacks of the AG test, the AGMOM test,
the AGWMOM test, t-test and the ANOVA respectively.
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Table 1 The Characteristics of the g- and h- Distribution

g- (Non-negative  h- (Non-negative  Skewness Kurtosis Types of Distribution
content) content)
0 0 0 3 Standard normal
0 0,5 0 1198,20 Symmetric heavy tailed
0,5 0 1,81 18393,60 Skewed normal tailed
0,5 0,5 120,10 18393,60 Skewed heavy tailed

Source: Wilcox (1997)

For the AG test, the AGMOM test, the AGWMOM test, the t-test and the ANOVA, a testing
was done to a good deal of considerable 5.000 data sets to give a satisfactory result for the
effectiveness of the test of the five tests respectively. To obtain the pseudo-random variates, SAS
generator RANNOR (SAS Institute, 1999) was used with a nominal level of o = On05 for the analysis
of the tests in this research.

Table 2 The Research Design for Two Group Case for N =40

The g- and h- Balanced and Variance ratio  Nature of Pairing Notations for
distribution Unbalanced sample size the Conditions

g=0andh=0 20:20 1:1 Balanced condition C1
1:36 Positive Pairing C2

16:24 1:1 C3

1:36 Positive Pairing C4

36:1 Negative Pairing C5

g=0andh=0.5 20:20 1:1 Balanced condition Ccé6
1:36 Positive Pairing C7

16:24 1:1 C8

1:36 Positive Pairing C9
36:1 Negative Pairing C10

g=05andh=0 20:20 1:1 Balanced condition Cl11
1:36 Positive Pairing C12

16:24 1:1 C13
1:36 Positive Pairing Cl4

36:1 Negative Pairing C15
g=0.5andh=0.5 20:20 1:1 Balanced condition Cl6
1:36 Positive Pairing C17
16:24 1:1 C18
1:36 Positive Pairing C19
36:1 Negative Pairing C20

Table 3 Research Design for Four Groups Case for N = 80

Notations for

'I;jhe g-and h- Balanced and Variance ratio  Nature of Pairing the Nature of
istribution Unbalanced sample size Pairing
g=0andh=0 20:20:20:20 1:1:1:1 Balanced condition C21
1:1:1:36 Positive Pairing C22
1:4:16:36 Positive Pairing C22
15:15:15:30 1:1:1:1 C24
1:1:1:36 Positive Pairing C25
36:1:1:1 Negative Pairing C26
1:4:16:36 Positive Pairing C27
36:16:4:1 Negative Pairing C28

314 Comlech Vol. 7 No. 4 December 2016: 307-323



Table 3 Research Design for Four Groups Case for N = 80 (Continued)

Notations for

'I;jhe g-and h- Balancedand Variance ratio  Nature of Pairing the Nature of
istribution Unbalanced sample size Pairing
g=0andh=0.5 20:20:20:20 1:1:1:1 Balanced condition C29
1:1:1:36 Positive Pairing C30
1:4:16:36 Positive Pairing C31
15:15:20:30 1:1:1:1 C32
1:1:1:36 Positive Pairing C33
36:1:1:1 Negative Pairing C34
1:4:16:36 Positive Pairing C35
36:16:4:1 Negative Pairing C36
g=0.5andh=0 20:20:20:20 1:1:1:1 Balanced condition C37
1:1:1:36 Positive Pairing C38
1:4:16:36 Positive Pairing C39
15:15:20:30 1:1:1:1 C40
1:1:1:36 Positive Pairing C41
36:1:1:1 Negative Pairing C42
1:4:16:36 Positive Pairing C43
36:16:4:1 Negative Pairing C44
g =05and h = 20:20:20:20 1:1:1:1 Balanced condition C45
0.5 1:1:1:36 Positive Pairing C46
1:4:16:36 Positive Pairing C47
15:15:20:30 1:1:1:1 C48
1:1:1:36 Positive Pairing C49
36:1:1:1 Negative Pairing C50
1:4:16:36 Positive Pairing Cs1
36:16:4:1 Negative Pairing C52
Table 4 Research Design for Six Groups Case for N = 120
The g- and h- Balanced and Variance ratio  Nature of Pairing Notations for the
distribution Unbalanced sample size Nature of Pairing
g=0andh=0 20:20:20:20:20:20 1:1:1:1:1:1 Balanced condition C53
1:1:1:1:1:36 Positive Pairing C54
1:4:4:16:16:36  Positive Pairing C55
g=0andh=0 2:4:4:16:32:62 1:1:1:1:1:1 C56
1:1:1:1:1:36  Positive Pairing C57
36:1:1:1:1:1 Negative Pairing C58
1:4:4:16:16:36  Positive Pairing C59
36:16:16:4:4:1  Negative Pairing C60
g=0andh=0.5 20:20:20:20:20:20 1:1:1:1:1:1 C61
1:1:1:1:1:36 Positive Pairing Co62
1:4:4:16:16:36  Positive Pairing C63
2:4:4:16:32:62 1:1:1:1:1:1 Co64
1:1:1:1:1:36 Positive Pairing C65
36:1:1:1:1:1 Negative Pairing C66
1:4:4:16:16:36  Positive Pairing Cc67
36:16:16:4:4:1  Negative Pairing C68
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Table 4 Research Design for Six Groups Case for N = 120 (Continued)

The g- and h- Balanced and Variance ratio  Nature of Pairing Notations for the
distribution Unbalanced sample size Nature of Pairing
g=05andh=0 20:20:20:20:20:20 1:1:1:1:1:1 Balanced condition C69
1:1:1:1:1:36 Positive Pairing C70
1:4:4:16:16:36  Positive Pairing C71
2:4:4:16:32:62 1:1:1:1:1:1 C72
1:1:1:1:1:36  Positive Pairing C73
36:1:1:1:1:1 Negative Pairing C74
1:4:4:16:16:36  Positive Pairing C75
36:16:16:4:4:1 Negative Pairing C76
g=0.5andh= 20:20:20:20:20:20 1:1:1:1:1:1 Balanced condition C77
0.5 1:1:1:1:1:36 Positive Pairing C78
1:4:4:16:16:36  Positive Pairing C79
1:1:1:1:1:1 C80
1:1:1:1:1:36 Positive Pairing C81
2:4:4:16:16:32:62 36:1:1:1:1:1 Negative Pairing C82
1:4:4:16:16:36  Positive Pairing C83
36:16:16:4:4:1  Negative Pairing C84

Source: Ochuko, Abdullah, Zain & Yahaya (2015)

It is necessary that the power be at more than 0,5 and can be considered adequate when it
stands at the point of 0,8 and above (Murphy & Myors, 1998). The likelihood of successfulness will be
at the quadruple amount of certainty if the power is 0,8. However, if the power sits on 0,9, then the
successfulness would be at nonuple of the certainty.

Table 5 Pattern of Variability for the Effect Size Index of 4 and 6 Groups

The Effect Size Index ForJ=4 ForJ=6
Small —ld,0,0,ld —ld,O,O,O,O,Ld
2 2 2 2
Medium Sl oty Ly Ly Slg oLy Ly Ly,
2 4 4 2 2 3 6 6
Lg L4
372
Large _Ld,_Ld,Ld’Ld _Ld,_ld’_Ld’
2 2
g Lg Ly
2

Source: Cohen, (1988)

The power of the tests is represented graphically, where the y-axis corresponds to the power of
the tests, and the horizontal axis represents the effect size index d for two groups condition and f for
more than two group condition. The graph is used to show the trends of the power of the tests on the
effect size index. According to scholars such as Murphy and Myors (1998) the power of a test must be
above 0,5. It can be considered sufficient and high when its value is 0,8 and above.

The graph shows those tests that have low power, sufficient and high power on the effect size

indexes (d and f). In this research, the effect size index was used for analyzing the power of the test of
the five different tests accordingly.
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RESULTS AND DISCUSSIONS

The Power of the Test for the AG Test, the AGMOM Test, the AGWMOM Test, the T-Test and
the ANOVA

Figure 1 Graphical representation of g =0 and h =0, of
Power against Effect Size Index,
for Two Group Condition
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Figure 2 Graphical Representation of g =0
and h = 0,5, of Power against the Effect Size Index, for Two

Group Condition

Figure 3 Graphical Representation of g = 0,5
and h = 0, of Power versus
Effect Size Index, for Two Group Case

o o na 4 n4s
nw an . wa
d 0.4 ..
s o vs 4 o
o —an - ——ad e L
a1 ¥
5 5 ns l_z a2 Ali E 0 —_—A
L Ativom £ s AGRIONM & AN & o7 - AL
? s
— o i
o —— AWM n1s AGHWRIN - ACIMIEAT uts AETNIONT
nz o - ——t et o — et
- ] - —timd nns .
o L v [
0.2 04 06 0F 11 0.2 04 0.6 D.E 02030405060 08 016 AFOINADSOAOTOR
et Stre inde r et Shre inde 12 Effactslza Indax THmct Stz Inde C17
LR na
i i
01 o4 -
o o LELI
LR
na A ta o5
—_—— L —an _
o g U2 — AL LEES AG
Eo0= AUMUM ACAIOM é o1 / AGMOM g us AT
. —— ALIW MM vl — AGWMOM
s ; oy a1
AGWMOM — AW MO / e . / B
. ———t-rest v ——l-lenl i,
= n .
a “ o
Ny na nnooR 13 02 04 Do o 14 AT A s C18 BN A S RGO C19
CrtectSize Index FHactSiza Index Tt N bl EMect Stze Index -0
o
s
o
s —ac
I An
Eos ACGMOM AGMOM
oo AGW MO
— AGWATOM
oz ——t e
ma . —_—
o=
I T R 15 0z @4 065 03
it Sirme rudmx imet Sl indax C20

Figure 4 Power against Effect Size Index, for Two Groups
Case, Forg=0and h=0
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Figure 8 Graphical Representation of g = 0,5 and
h =0,5, of Power against Effect Size Index,
for Four Groups Condition
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h =0, of Power against Effect Size Index,
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Figure 10 Graphical Representation for g =0 and
h = 0,5, of Power against Effect Size Index,
for six Groups Conditions
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Figure 11 Graphical Representation for g = 0,5 and
h =0, of Power against Effect Size Index,
for Six Groups Condition

Figure 12 Graphical representation for g = 0.5 and
h = 0.5, of Power against Effect Size Index,
for Six Groups Condition

Forg=0and h=0,g=0and h=0,5and g =0,5 and h = 0, under two group case, the power

The Power of the Test... (Tobi Kingsley Ochuko, ef al.)

of the AG test, the AGMOM test, the AGWMOM test and the t-test is increasing as the effect size
index is increasing. For g = 0,5 and h = 0,5, the AGWMOM test has the highest amount of power
compared to the other three tests under this condition, the power of the AGWMOM test is above 0,8
and is regarded as high and sufficient. In C37, C38, C39, C40 and C41, the power of the four tests is
above 0.5 and is considered to be sufficient. In C53, C54 and C57, under six group case, for g = 0 and
h =0, the AGWMOM test has the highest power compared to the other three tests and the power of the
test is said to be sufficient and high. For g= 0,5 and h = 0,5, in C77 and C78, under six group case, the
AGWMOM test produced the highest power compared to the other three tests and the power of the
test is referred to as sufficient and high.
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CONCLUSIONS

The AGWMOM test produced the highest power for g = 0,5 and h = 0,5, under four group
case and g = 0 and h = 0, under six group case in comparison to the other three tests and the power of
the test is referred to as sufficient and high.
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