
Shortest Path … (Elizabeth Nurmiyati Tamatjita; Aditya Wikan Mahastama) 161

SHORTEST PATH WITH DYNAMIC WEIGHT IMPLEMENTATION
USING DIJKSTRA’S ALGORITHM

Elizabeth Nurmiyati Tamatjita1; Aditya Wikan Mahastama2

1Department of Informatics, Sekolah Tinggi Teknologi Adisutjipto

 Jl. Janti Blok R Lanud Adisutjipto, Yogyakarta, 55198
2Depatment of Informatics, Faculty of Information Technology, Universitas Kristen Duta Wacana

Jl. Dr. Wahidin Sudirohusodo No. 5 – 25, Yogyakarta, 55224
1tamatjita@gmail.com; 2mahas@staff.ukdw.ac.id

ABSTRACT

Shortest path algorithms have been long applied to solve daily problems by selecting the most feasible
route with minimum cost or time. However, some of the problems are not simple. This study applied the case
using Dijkstra's algorithm on a graph representing street routes with two possible digraphs: one-way and two-
way. Each cost was able to be changed anytime, representing the change in traffic condition. Results show that
the usage of one way digraph in mapping the route does make the goal possible to reach, while the usage of two-
way digraph may cause confusion although it is probably the possible choice in the real world. Both experiments
showed that there are no additional computation stresses in re-calculating the shortest path while going halfway
to reach the goal.

Keywords: shortest path, dynamic weight, Dijkstra’s algorithm, graph, digraph

INTRODUCTION

A graph is a symbolic representation of a network and its interconnections. A graph shows an
implication of reality simplified as a set of connected nodes. Graph theory is a study of mathematics
which codes and measures the features of a network. Graph theory has been enriched in these last
decades with influences from social sciences (Rodrigue & Ducruet, 2015). An implementation of
graph theory is to find the shortest path connecting a start and end nodes through several other nodes.
This search takes into consideration a cost optimization regarding distance or other costs, so in the
end, there will be only one optimal path which has the most minimum cost.

Therefore, the usual case to which shortest path algorithms were implemented to solve is

transportation problems, where transport cost are the main compensation expendable to run a route
between two locations. These were a static case since a few decades ago there weren't many dynamic
factors affecting transport cost, and some established systems are still using the same measurement
such as freight forwarders, packet services, etc.

However, when computer games come to a rise, the case are expanded to solve transportation

problems in games, which in turn represents today’s real condition on a micro scale. Computer games’
transportation problems are more complex because it involves just-in-time decision to change the next
route when additional problems came up, such as unexpected monsters, disasters, and so on. These are
not too far away from today's traffic problems. Traffic congestion often came out of nowhere and is
not expected before. Gladly the automatic traffic control has the data which shows on what route the
congestion occurs and how bad the traffic is, so it is feasible to model the graph and cost using these
data in order to find the most possible new route.

162 ComTech Vol. 7 No. 3 September 2016: 161-171

Dijkstra (1959) created one of the earliest algorithms in finding the shortest path, based on
selecting the most minimum transportation cost (called weight) of an edge connecting two nodes
(basically a way connecting two locations), expand the weight measurement to the next possible
nodes, calculating the total weight and updated the route if a new total minimum weight is found. The
network is modeled as a directed graph consisting of nodes and directed edges, without any loop edges
coming from and pointing to a same node (Harju, 2011).

Dijkstra’s algorithm has been implemented mainly to solve static transportation problems such

as the shortest path between two cities in Central Java (Sunaryo, Siang & Chrismanto, 2012) and
South Sumatera (Fitria & Triansyah, 2013), to define the shortest path using multi-means of public
transportation (Arifianto, 2012), and to locate the nearest public facility like hospitals, hotels and bus
stations in a city (Sholichin, Yasindan, & Octoviana, 2012).

A nearly dynamic implementation was used to solve adaptive drinking water distribution

problem for housing (Prasetyo, 2013). However, the simulation does not include a real-time dynamic
change of water distribution capacity as its weights. A comparative study has also been conducted
regarding computational loads of Dijkstra’s algorithm against Floyd-Warshall algorithm for a same
certain case (Djojo & Karyono, 2013).

Although the algorithm does expand way too wide in search for the optimum weight resulting

in a rather inefficient time (Głabowski et al., 2013), it is quite simple to be implemented, so for a
limited or a selected number of alternative nodes, this algorithm should fit and gives a clear
impression of whether a dynamic change in edge weights between the start and end node is still
feasible to implement and how it will affect the computational load. The expected results may show
whether dynamic changes in weight is still feasible to be implemented and used for everyday traffic
problem solving, e.g. for a fire-fighter to reach the fire location, an ambulance en route to a hospital,
etc.

This study will focus to resolve several problems. First, to find out whether Dijkstra’s

algorithm is feasible to solve and find the shortest path of a directed graph with dynamic weights.
Second, to know whether or not the path offered as the final solution is the correct shortest path.
Finally, to find whether or not a performance problem occurs when the weights are changed
dynamically?

For this study, an experimental environment is limited to a maximum of 30 nodes, with one

start and one end nodes. The graph used for modelling are directed graph which doesn't contain any
direct loop. Weight changes are able to be done real-time through the on-screen interface, regardless
the current route calculation has been commenced or not. The result (final overall route selected) will
be displayed on the screen to aid manual study for the correct path.

There are some purposes to be achieved in this research. The first one is to create a model for

shortest path analysis with dynamic weight using Dijkstra’s algorithm. Next, to study whether certain
cases of dynamic weight change may render a solving failure which leads to wrongly selected route or
an unfinishable route. Third, observing whether a raise in performance load (measured in time needed
to calculate) will occur for certain cases of dynamic weights.

METHODS

A graph is a symbolic representation of a network and its interconnections. A graph shows an
implication of reality simplified as a set of connected nodes. Graph theory is a study of mathematics

Shortest Path … (Elizabeth Nurmiyati Tamatjita; Aditya Wikan Mahastama) 163

which codes and measures the features of a network. According to Astuti (2015), graph G (V, E) is a
collection of two sets: (1) set V which elements are the nodes or vertices and (2) set E which elements
are the edges.

The amount of members in set V determines the order of graph G, while the amount of

members in set E is the size of graph G. Examples of graphs are shown in Figure 1.

Figure 1 Graph Examples

The second graph from left in Figure 1 shows an occurrence of multiple edges or parallel
edges e3= (1, 3) and e4= (1, 3) which connects a same pair of nodes. The third graph from left shows
an occurrence of loop e8 which connected to and for a same node.

If the edges are having weight (cost needed to pass the edge), then the graph is called a

weighted graph. The weight is written near the edge as the name and placed in certain way to avoid
confusion.

According to the orientation of edges, graph falls into two categories; undirected graph or just

“graph” and directed graph or "digraph." Digraph has arrowheads on edges showing the direction in
which the edge is leading to, such as displayed in Figure 2.

Figure 2 Directed Graph

Ruohonen (2013) defined that Dijkstra’s algorithm is used to solve shortest path problem
(finding a path with the minimum length) from a start node to an end node in a weighted graph, and
the weight should be a positive number. Given G is a weighted digraph with nodes V (G) = {v1,
v2,…,vn} and shortest path in question is from v1to vn, Dijkstra's algorithm begins from v1.

During its iteration, Dijkstra's algorithm will find a successor node which costs a smaller up-to

weight than the current node. Selected successor nodes are kept aside and not involved in the next
iteration. The whole pseudo code for Dijkstra's algorithm is declared in Figure 3.

164 ComTech Vol. 7 No. 3 September 2016: 161-171

Figure 3 Pseudocode for Dijkstra's Algorithm

The study constructed these models to support the research. A system model used in this research,
which follows the block diagram shown in Figure 4.

Function Dijkstra (M: graph weight in an array of nodes, a :
integer)

Declare
D, S : array[1..n] of integer
i, j, k min : integer

Steps
{ Step 0 (initialisation): }
for i ← 1 to n do
 S[i] ← 0
 D[i] ← M[a, i]
Endfor

 { Step 1: }
S[a] ← 1 { input initial node into S }

{ Steps 2, 3, ..., n-1 : }
for k ← 2 to n – 1 do

{ look for node j as to S[j] = 0
 Dan D[j] = Minimum{D[1], D[2], ..., D[n] }
 min ← D[1]
 j ← l
 for i ← 2 to n do
 if (S[i] = 0) and (D[i] < min) then
 min ← D[i]
 j ← i
 endif
 endfor

 S[j] ← l {Node j is already selected into the shortest path}
 {recalculate D[i] from node a to node i S}
 for i ← l to n do
 if S[i] = 0 then
 if D[i] > (D[j] + M[j,i]) then
 D[i] ← D[j] + M[j,i]
 endif
 endif
 endfor
endfor

return D

Shortest

A
store no
dynamic

T

Observa
user inte
original
changing

T

which m
visualize
to end no
its "orig
finishabl

T
wheneve
path is th

T

map for
which is
has a tot

t Path … (Eliza

A data struc
odes, edges r
cally.

These mode
ations and ev
erface which
weight of an

g a node terr

The terrain a
may lead the
ed on-screen
ode, and cha
inal" shortes
le, correct or

The path is
er there is a
hen merged w

Two predefin
twenty sess

s also its tota
tal weight of

abeth Nurmiy

cture model
relating two

els are imple
valuations are
h helps the e
n edge (state
ain or puttin

and obstacle
e system to s

by an ambu
anges in path
st path. The
r render to an

recalculated
weight chan
with the prev

ned “maps”
sions conduc
al initial shor
f 2500 for it

iyati Tamatjita

Figu

used to stor
o nodes and

emented as
e conducted
ease of use
ed as the dis
g certain obs

represent a
select anothe

ulating red sp
h selection ar

animated sp
n unfinished

Figure 5 T

d from a nod
nge in at leas
vious path w

or certain fo
cted. Map A
rtest path len
ts initial sho

ta; Aditya Wik

ure 4 System M

re the digrap
its weight.

a program
using the pro
in visualizin
stance betwe
stacles availa

change in tr
er feasible r

phere running
re easy to ob
phere is also
loop. The pr

Testing Progra

de to be reac
st one of esta

which has trod

orms of graph
A has a total
ngth, with st
rtest path, w

kan Mahasta

Model

ph data. The
The weight

which used
ogram. The r
ng the map m
een two nod
able into an e

raffic load or
road on an i
g along the "
bserve visual
o used to obs
rogram interf

m Interface

ched by the
ablished shor
dden and bec

hs are used in
l weight of 2
tandard comp

with 2500 un

ama)

data structu
t should be

to test the
resulting pro
model of an

des), or dyna
edge.

r congestion
intersection.
"shortest" pat
ly with the s
serve whethe
face is presen

red sphere.
rtest path ed
come the fina

n forty testin
2000 for its
pletion time

nits long and

ure should b
able to be

cases in th
ogram has a
n area, modi
amically mod

in a success
The selecte

th from the s
sphere deviat
er the offere
nted in Figur

Recalculatio
dges. The rec
al shortest pa

ng sessions, w
initial short
200 seconds

d standard co

165

be able to
modified

his study.
graphical
fying the
dify it by

sive road,
d path is
start node
ting from

ed path is
re 5.

on occurs
calculated
ath.

with each
test path,
s. Map B

ompletion

166 ComTech Vol. 7 No. 3 September 2016: 161-171

time of 250 seconds. Map A and Map B has their special characteristics in which Map A has most
edges exiting from a node with slight differences in weight – which reflects small differences in edge
length, while Map B has a very different weight for most existing edges, as shown in Figure 6.

Figure 6 Characteristics of Map Types

These served as possible conditions of a road map, where sometimes the path choice are easily
available because they are near identical; and sometimes there are only a few choice, including turning
back if necessary, to obtain the shortest path. Every two sessions, the same dynamic modifications
conducted using a single-way digraph and two-way digraph.

For the two-way digraph test, the maps are not entirely made as the two-way digraph, only

selected edges are made to have parallel edges to simulate the real condition of city streets, which
frequently are a two-way system, and vehicles are often able to turn back to select a better path from a
node before. The two-way digraph also uses to test the possibility of Dijkstra's algorithm in solving it,
since researches conducted before have not been discussing about a possibility of the two-way
digraph. The types test sessions conducted are illustrated in Table 1.

Table 1 Test Types

Map Dynamic Change # Digraph Test Session
Map A Mod #1 One-way Test A1-1

Two-way Test A1-2
Mod #2 One-way Test A2-1

Two-way Test A2-2
Mod #3 One-way Test A3-1

Two-way Test A3-2
Mod #4 One-way Test A4-1

Two-way Test A4-2
Mod #5 One-way Test A5-1

Two-way Test A5-2
Mod #6 One-way Test A6-1

Two-way Test A6-2
Mod #7 One-way Test A7-1

Two-way Test A7-2
Mod #8 One-way Test A8-1

Two-way Test A8-2
Mod #9 One-way Test A9-1

Two-way Test A9-2
Mod #10 One-way Test A10-1

Two-way Test A10-2

Shortest

W
weight r
the “terr
number
node is a
path has

M

modifica
modifica
modifica
path up
the end n

t Path … (Eliza

Map
Map B

Weight mod
required for p
rain level” to
to arriving e
altered so as
to be selecte

Modification
ation, so M
ations. Figur
ation, the sh
to the end no
node is reach

abeth Nurmiy

Dy
B

dification is
passing edge
o water or hil
edges’ weigh

the original
ed. The inten

n with a bi
od #10 will
re 7 illustra
ortest path i
ode. Next te
hed.

iyati Tamatjita

Table 1 T

ynamic Chang
Mod #1

Mod #2

Mod #3

Mod #4

Mod #5

Mod #6

Mod #7

Mod #8

Mod #9

Mod #10

done by alte
es to reach th
ll (default is

ht. This can a
incoming pa

nsity of the a

igger numbe
l have at le

ated how mo
s recalculate

est session co

Figure 7

ta; Aditya Wik

Test Types (co

ge #

ering a pred
his node. Alte

0 or a flat la
also serve as
ath's weight b
alterations is

er indicates
east ten mo
odifications
ed and waite
ommenced b

Mod #1-#3 fo

kan Mahasta

ontinued)

Digraph
One-way
Two-way
One-way
Two-way
One-way
Two-way
One-way
Two-way
One-way
Two-way
One-way
Two-way
One-way
Two-way
One-way
Two-way
One-way
Two-way
One-way
Two-way

determined n
ernation is do
and), to incre
traffic conge

become not e
indicated by

previous m
difications a
#1 to #3 o

ed until the r
by performing

for Map A

ama)

Test
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Te
Tes
Tes

node for each
one by select
ease the wei
estion weigh
eligible to pa

y the radius o

modification
as it resulte

of Map A ar
red sphere fi
g all modific

t Session
st B1-1
st B1-2
st B2-1
st B2-2
st B3-1
st B3-2
st B4-1
st B4-2
st B5-1
st B5-2
st B6-1
st B6-2
st B7-1
st B7-2
st B8-1
st B8-2
st B9-1
st B9-2
st B10-1
st B10-2

h test to inc
ting a node t
ght by addin

ht. The prede
ass, and an al
of the bluish m

added with
ed from all
re made. A
inished follo
cations and w

167

rease the
then slide
ng certain
etermined
lternative
mists.

h another
previous

fter each
owing the
wait until

168

F
of the pa

D
suggeste

M
Map A
(Initia
path:
weigh
length
standa
comp
200se

For every tes
ath, factors o

Data collect
ed path are su

Map
A
al shortest
(1) total

ht: 2000, (2)
h: 2000, (3)
ard
letion time

econds)

F

st session co
occurred rega

R

ted from tes
ubject to fini

Dyn. Chang
Mod #1

Mod #2

Mod #3

Mod #4

Mod #5

Mod #6

Mod #7

Mod #8

Mod #9

Mod #10

Figure 7 Mod #

onducted, dat
arding finish

RESULTS

sting session
ishability, the

Table 2

ge # Digr
One-w
Two-
One-w
Two-
One-w
Two-
One-w
Two-
One-w
Two-
One-w
Two-
One-w
Two-
One-w
Two-
One-w
Two-
One-w
Two-

Com

#1-#3 for Map

ta is collected
ability, and t

AND DIS

ns sum up t
erefore, com

2 Test Session

aph Tes
way T

-way T
way T

-way T
way T

-way T
way T

-way T
way T

-way T
way T

-way T
way T

-way T
way T

-way T
way T

-way T
way Te

-way Te

mTech Vol. 7

p A (continue

d regarding s
time of comp

CUSSION

the results a
mpletion time

n Results

st Session
est A1-1
est A1-2
est A2-1
est A2-2
est A3-1
est A3-2
est A4-1
est A4-2
est A5-1
est A5-2
est A6-1
est A6-2
est A7-1
est A7-2
est A8-1
est A8-2
est A9-1
est A9-2

est A10-1
est A10-2

 No. 3 Septe

d)

shortest path
pletion.

NS

as presented
regarded as

Finishable
Yes
Yes
Yes
Yes
Yes

No – Loop
Yes

No – Loop
Yes
Yes
Yes

No – Loop
Yes

No – Loop
Yes
Yes
Yes
Yes
Yes
Yes

ember 2016:

h solved, fini

in Table 2
not available

e Complet
20
20
20
20
21

20

20
20
21

20

20
20
20
20
21
21

 161-171

sh ability

. Not all
e.

t. time (s)
01
01
03
03
10

06

01
05
15

08

04
04
02
02
16
11

Shortest Path … (Elizabeth Nurmiyati Tamatjita; Aditya Wikan Mahastama) 169

Table 2 Test Session Results (continued)

Map Dyn. Change # Digraph Test Session Finishable Complet. time (s)
Map B (Initial
shortest path:
(1) total
weight: 2500,
(2) length:
2500, (3)
standard
completion
time 250
seconds)

Mod #1 One-way Test B1-1 Yes 223
Two-way Test B1-2 Yes 222

Mod #2 One-way Test B2-1 Yes 235
Two-way Test B2-2 Yes 251

Mod #3 One-way Test B3-1 Yes 258
Two-way Test B3-2 Yes 245

Mod #4 One-way Test B4-1 Yes 258
Two-way Test B4-2 Yes 262

Mod #5 One-way Test B5-1 Yes 255
Two-way Test B5-2 No – Loop

Mod #6 One-way Test B6-1 Yes 256
Two-way Test B6-2 No – Loop

Mod #7 One-way Test B7-1 Yes 253
Two-way Test B7-2 No – Loop

Mod #8 One-way Test B8-1 Yes 252
Two-way Test B8-2 Yes 252

Mod #9 One-way Test B9-1 Yes 252
Two-way Test B9-2 Yes 252

Mod #10 One-way Test B10-1 Yes 252
Two-way Test B10-2 Yes 252

From 40 test sessions conducted, seven of them (17,5%) are failed to be finishable. This
means that the red sphere keeps looping between two nodes and not selecting another option as a way
out of this. Three modifications (7,5%) even resulting better completion times than the original
standard, and seven pairs of one-way and two-way tests or 14 sessions (35%) result in the same
completion time.

The result is inevitably subjected to the features of Map A or Map B. Map A has the feature of

which alternative edges have nearly similar weights, while Map B has the unique feature of which
alternative path(s) may have a very different weight, speaking of individual edge weights, total
alternative path weight or even node count. Thus, Map B has a wider variation of alternative path
weights than Map A. Nevertheless, there are several discussion points regarding the results.

First, identical completion time between pairs of one-way and two-way tests is a result of

same new path rendered and one or two-way edge are not heavily affecting the resulting new path.
This especially occurred at the beginning or near the edge of the path where options are rare.

Second, loops occurred whenever an edge selected as the best beginning “way back” also has

the smallest weight in the “next” intersection, which originally was the “previous” intersection. This
leads to selecting the same edge as a path over and over and the red sphere are keep rotating over the
edge. It may be a feature specific to the map.

Third, completion times which are lower than the standard completion time is a result of over

adding weight on an edge, then the sphere turned back on its first edge and selected another edge
which happens to have less weight and less node compared to the added modification.

Fourth, another possible explanation for completion time lower than standard is that the red

sphere began to move right after the first edge is determined. This is a programming feature which

170 ComTech Vol. 7 No. 3 September 2016: 161-171

may or may not interfere with the final “correct” shortest path, as is it unknown whether the first edge
determination is final or not for the corresponding path.

Fifth, each completion time has a small deviation compared to the real length of path. Every

second is roughly equal to 10 units of route length. Although completion time cannot be rendered as
detail as milliseconds, the deviation which manually calculated in seconds shows only 1%, thus the
recalculation time is so fast and not effective when implemented to the real map of the same
complexity.

CONCLUSIONS

The study made three conclusions from research conducted. First, Dijkstra’s algorithm is
feasible to solve shortest path problem with dynamic weights, using a one-way digraph (digraph
without parallel edges). Second, Dijkstra’s algorithm is not feasible to solve shortest path problem
with dynamic weights, using a two-way digraph (digraph with opposite parallel edges), because a
large “loop” may occur between two nodes after a recalculation. Therefore regular road map
consisting of two-way traffic is not to be solved as is using Dijkstra’s algorithm. A suggestion to
eliminate this is by programming that parallel edges between two nodes are not to be selected as a
sequence in the path. Third, there are no performance drawbacks in recalculating the shortest patch
every time a change happened. For example, when situated as a problem-solving alternative of how to
avoid city traffic congestion and road class from the fire station to fire site, this has no significant
effect in computational time. Effects on a wider graph consisting of more than 30 nodes are unknown.

REFERENCES

Astuti, Y. D. (2015). Dasar Teori Grafin “Logika dan Algoritma” lecture notes. Retrieved February
18, 2015 from http://rifki_kosasih.staff.gunadarma.ac.id/Downloads/files/37568/Bab+1+-
+Dasar+Teori+Graf.pdf

Arifianto, S. (2012). Sistem Aplikasi Penentuan Rute Terpendek Pada Jaringan Multi Moda

Transportasi Umum Menggunakan Algoritma Dijkstra (Master’s thesis). Semarang: Program
Studi Sistem Informasi, Program Pascasarjana Universitas Diponegoro

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1,

269–271

Djojo, M. A., & Karyono. (2013). Pengukuran Beban Komputasi Algoritma Dijkstra, A*, dan Floyd-

Warshall pada Perangkat Android. ULTIMA Computing, 5(1), 13-17.

Głabowski, M., Musznicki, B., Nowak, P., & Zwierzykowski, P. (2013). Efficiency Evaluation of

Shortest Path Algorithms. In The Ninth Advanced International Conference on
Telecommunications (AICT) 2013 Proceedings (pp. 154-160). Rome, Italy.

Harju, T. (2011). Lecture Notes on Graph Theory, Department of Mathematics, University of Turku,

Finland. Retrieved February 18, 2015 from http://cs.bme.hu/fcs/graphtheory.pdf

Shortest Path … (Elizabeth Nurmiyati Tamatjita; Aditya Wikan Mahastama) 171

Prasetyo, V. Z. (2013). Penerapan Algoritma Dijkstra Untuk Perutean Adaptif Pada Jaringan
Pendistribusian Air PDAM di Kabupaten Demak (Bachelor’s thesis). Semarang: Jurusan
Matematika, Fakultas MIPA, Universitas Negeri Semarang

Rodrigue, J-P., & Ducruet, C. (2015). Graph Theory: Measures and Indices. Retrieved February 18,

2015 from https://people.hofstra.edu/geotrans/eng/methods/ch1m3en.html

Ruohonen, K. (2013). Graph Theory. Retrieved February 18, 2015 from http://math.tut.fi/

~ruohonen/GT_English.pdf

Sholichin, R., Yasindan, M., & Oktoviana, L. T. (2012). Implementasi Algoritma Dijkstra Dalam

Pencarian Lintasan Terpendek Lokasi Rumah Sakit, Hotel Dan Terminal Kota Malang
Berbasis Web. Jurnal Online Universitas Negeri Malang, (Online).

Sunaryo, Siang, J. J., & Chrismanto, A. R. (2012). Pencarian Jalur Terpendek Antar Kota Di Jawa

Tengah Dan D.I. Yogyakarta Dengan Algoritma Dijkstra Via SMS Gateway (Bachelor’s
thesis). Yogyakarta: Program Studi Teknik Informatika, Fakultas Teknologi Informasi,
Universitas Kristen Duta Wacana

Triansyah, F. A. (2013). Implementasi Algoritma Dijkstra Dalam Aplikasi Untuk Menentukan

Lintasan Terpendek Jalan Darat Antar Kota Di Sumatera Bagian Selatan. Jurnal Sistem
Informasi (JSI), 5(2), 611-621.

