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ABSTRACT 
 
 

This research dealt with making comparison of the independent group tests with the use of parametric 
technique. This test used mean as its central tendency measure. It was a better alternative to the ANOVA, the 
Welch test and the James test, because it gave a good control of Type I error rates and high power with ease in 
its calculation, for variance heterogeneity under a normal data. But the test was found not to be robust to non-
normal data. Trimmed mean was used on the test as its central tendency measure under non-normality for two 
group condition, but as the number of groups increased above two, the test failed to give a good control of Type I 
error rates. As a result of this, the MOM estimator was applied on the test as its central tendency measure and is 
not influenced by the number of groups. However, under extreme condition of skewness and kurtosis, the MOM 
estimator could no longer control the Type I error rates. In this study, the Winsorized MOM estimator was used 
in the AG test, as a measure of its central tendency under non-normality. 5,000 data sets were simulated and 
analysed for each of the test in the research design with the use of Statistical Analysis Software (SAS) package. 
The results of the analysis shows that the Winsorized modified one step M-estimator in the Alexander-Govern 
(AGWMOM) test, gave the best control of Type I error rates under non-normality compared to the AG test, the 
AGMOM test, and the ANOVA, with the highest number of conditions for both lenient and stringent criteria of 
robustness. 
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INTRODUCTION 
 
 

In this study, five different tests were used, namely: (i) Alexander-Govern test (AG) (ii) 
Modified One Step M-estimator (MOM) (iii) Winsorized Modified One Step M-estimator in 
Alexander-Govern test AGWMOM (iv) t-test (v) ANOVA. These tests are performed under two, four 
and six group conditions, with each of the g- and h- distribution. 

 
The g- and h- distribution is used for determine the level of skewness and kurtosis in a data 

distribution. The ANOVA is very useful in different areas of life, for example in agriculture, sociology, 
banking, economic and in medicine as stated by Pardo, Pardo, Vincente and Esteban (1997). Three 
basic assumptions must be satisfied before the ANOVA can work rightly. They are: homogeneity of the 
variance, normality of the data and independent observations. The ANOVA is very useful for 
comparing the differences between three or more means. It is applicable in testing the equality of the 
central tendency of a data set and is robust to little deviations from a normal data, mainly when the 
sample size is large to guarantee normality as explained by Wilcox (1997; 2003). 
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Researchers such as Yusof, Abdullah, Yahaya and Othman (2011) discovered that variance 
heterogeneity and non-normality are the problems affecting the ANOVA. This makes the Type I error 
rates to be increased and the power would be decreased. The problem of variance heterogeneity has 
been addressed by few researchers and some alternatives have been provided. Welch (1951) 
introduced the Welch test, for testing the hypothesis of two populations with equal means. It has been 
mentioned in different literatures as good alternative to the ANOVA (Algina, Oshima & Lin, 1994). 

 
The Welch test gives a good control of Type I error rates when the variances are not equal. It is 

a better alternative to parametric method that uses heteroscedasticity. However, for a small sample 
size, the Welch test fails to give a good control of Type I error rates, as the group sizes increases 
(Wilcox, 1988). The James test was introduced by James (1951) as a better alternative to the ANOVA 
for variance heterogeneity. This test is used for weighing the sample means and it has been discussed 
in many literatures as a better alternative to the ANOVA (Oshima & Algina, 1992; Wilcox, 1988). 

 
When the sample size is small under non-normal data, the James test fails to control Type I 

error rates. Both the Welch test and the James test are used for analysing a non-normal data with 
variance heterogeneity (Brunner, Dette, & Munk, 1997; Krishnamoorthy, Lu, & Matthew, 2007; 
Wilcox & Keselman, 2003). The Alexander-Govern test was proposed by Alexander-Govern (1994) to 
handle the problem of heterogeneity of variance under normal data. But the test is not robust to non-
normality. Scholars such as Schneider and Penfield (1997) and Myers (1998) suggested that the 
Alexander-Govern test is a better alternative compared to the James test and the Welch test 
respectively. Myers (1998) admitted that the Alexander-Govern test gives an outstanding control of 
Type I error rates, for variance heterogeneity under a normal data. Lix and Keselman (1998) proposed 
a better alternative to the mean with the introduction of trimmed mean in few robust test statistics that 
increases the performance of the test under non-normality. 

 
A better alternative to the use of trimmed mean is a highly robust estimator called the 

modified one step M-estimator. Othman et al. (2004) explained that the MOM estimator trims the 
extreme data set only, depending on the type of the data distribution. Under a skewed data distribution, 
the amount of trimming should not be the same at both tails of the distribution. For example, when the 
distribution is skewed to the right tail, more of the right tail of the distribution would be trimmed. 
When using any estimator that uses trimming, one thing that is significant is the process of trimming 
itself. Trimmed means assists to trims data symmetrically without any regard on the nature of the 
distribution. While the MOM estimator specializes in trimming only the data that is observed as 
outliers. When both tails of the distribution are detected as outliers, the data distribution would be 
trimmed symmetrically, otherwise if it is one side of the distribution is detected as outlier, it would be 
trimmed asymmetrically, meaning that only one tail of the data set would be trimmed. A non-normal 
data is a condition whereby a data is not normally distributed. In addition, Schneider and Penfield 
(1997) admitted that the Alexander-Govern test is a better alternative to the ANOVA under variance 
heterogeneity compared to the Welch test and the James test due its’ less complexity in calculation and 
having a good control of Type I error rates. It also produces high level of power under most 
experimental situations, referring to different levels of examination, when the test was applied in a 
data distribution, in order to identify its effectiveness in a data distribution. However, when there is 
variance heterogeneity under normality it was only good for normal data, but not suitable for non-
normal data, as discussed by Myer (1998). 

 
According to scholars such as Ochuko, Abdullah, Zain, and Yahaya (2015) explained that the 

Winsorization process is making a substitution or an exchange for the outlier detected value with a 
preceding value closest to it. Winsorization has greater advantages over the trimming technique in the 
data distribution namely: (1) it makes a replacement or an exchange for an outlier detected value with 
the closest value to the position where the outlier is located (2) the sample size of the data remains the 
same (3) it helps to prevent loss of information. 
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One of the recommended estimator as a better substitute for the trimmed mean is the MOM 
estimator that is capable of detecting the appearance of outliers in a data distribution (Yusof, Abdullah, 
Yahaya, & Othman, 2011). The MOM estimator does empirically trim only extreme data sets (Othma, 
Keselma, Padmanabhan, Wilcox, & Fradette, 2004). However, the main constraint in using the MOM 
estimator as a central tendency measure in Alexander-Govern test is that it fails to give an excellent 
control of Type I error rates when g = 0.5 and h = 0.5. This study uses the Winsorized modified one 
step M-estimator in Alexander-Govern test as its central tendency measure to strengthen its weakness 
under non-normality, in the presence of variance heterogeneity, for g = 0.5 and h = 0.5, to give a 
remarkable control of Type I error rates and to produce high power for the test. 

 
 

METHODS 
 
 
The Alexander-Govern test is introduced by Alexander-Govern (1994) and the test uses mean 

as its central tendency measure. Under normality, it gives a remarkable control of Type I error rates 
and high power under variance heterogeneity, but the test is not robust to non-normal data. This test is 
used for comparing two or more groups and its test statistic is derived using the following procedure. 

 
The procedure in obtaining the test statistic for the Alexander-Govern test begins by first 

ordering the data distribution, with population sizes of j (j = 1, …, J). In each of the data sets, the mean 
is calculated by using the formula below: 
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Where ijX represents the observed ordered random sample with jn as the sample size of the 

observations. The mean is used as the central tendency measure in the Alexander-Govern (AG) test. 
After obtaining the mean, the usual unbiased estimate of the variance is obtained by using the formula: 
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Where jX
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is used for estimating jμ for the population j. The standard error of the mean is 
calculated using the formula below: 
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The weight )( jw for the group sizes with population j of the observed ordered random sample 

is defined, where ∑ jw must be equal to 1. The weight )( jw for each of the groups is calculated 
using the formula below: 
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The null hypothesis testing for the Alexander-Govern (1994) for the equality of mean, under 
heterogeneity of variance is expressed using: 
Ho: µ1= µ2 = … = µj 
HA: µ1 ≠ µj 
For at least i ≠ j 
 

The alternative hypothesis contradicts the statement made by the null hypothesis. The variance 
weighted estimated of the total mean for all the groups is calculated using the formula below: 
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Where, jw , is the weight for each of the independent groups in the data distribution and jX
−

is the mean of each of the independent groups in the observed ordered data sets. The t statistic for each 
of the independent groups is calculated by using the formula: 
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Where jX
−

is the mean for each of the independent group, 
∧

μ is the grand mean for all the 
independent groups with population j, the t statistic with nj – 1 degrees of freedom. Where ν is the 
degree of freedom for each of the independent groups in the observed ordered data sets. The t statistic 
is calculated for each of the groups and is converted to standard normal deviates using the Hill’s 
(1970) normalization approximation formula in the Alexander-Govern (1994) approach.  
The formula is defined using: 
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The test statistic for the AG test is defined as: 
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After obtaining the test statistic for the AG test, at α = 0.05 at )1( −j chi-square degree of 

freedom is selected. If the p-value obtained for the AG test is > 0.05, the test is regarded as not 
significant, otherwise the test is said to be significant. 

 
Let the observed ordered data sets of ,...,,, 21 nXXX with sample n and group sizes j. 

Firstly, the median of the data set is calculated by selecting the middle value from the observations. 
The MAD estimator is the median of the set of the absolute values of the differences between each of 
the score and the median. It is the median of MX j − , …, .MX n − Therefore, the median absolute 

deviation about the median )( nMAD  estimator is calculated using the formula: 
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,
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MADMAD n =                 (11) 

 
As stated by Wilcox and Keselman (2003) the constant value of 0.6745 is used for rescaling 

the MAD estimator with the purpose of estimating the σ when taking samples from a normal 
distribution. Outliers in a data distribution can be detected by using: 
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Where jX is the observed ordered random sample, M is the median of the ordered random 

samples and nMAD is the median absolute deviation about the median. The value of K is 2.24. This 
value was proposed by Wilcox and Keselman (2003) in detecting the appearance of outliers in a data 
distribution, because it has a very small standard error, when the sample of the data is normal. 
Equation (12) and (13) is also referred to as the MOM estimator that is used for detecting the 
appearance of outliers in a data set. In this research, the mean is replaced with the modified MOM 
estimator as a measure of the central tendency in the Alexander-Govern test. 

 
The WMOM estimator is applied on the data distribution, where the outlier value detected is 

replaced or exchanged with a preceding value closest to the position where the outlier is located. The 
WMOM estimator is calculated by averaging the Winsorized data distribution. It is expressed using: 
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The WMOM estimator is a replacement for mean as a central tendency measure in the 

Alexander-Govern test, due to several reasons. First, to remove the appearance of outliers from the 
data distribution. Second, to make the Alexander-Govern test to be robust to non-normal data. 

 
The Winsorized sample variance is defined as: 
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Where jX
−

is the observed random ordered sample and WMOMjX
−

, is the Winsorized MOM 
estimator for the Winsorized data distribution. The standard error of the WMOM is calculated using the 
bootstrapping technique. The bootstrapping algorithm for estimating the standard errors is obtained 
using the following steps. 

 
Firstly, we select B independent bootstrap samples expressed as: ,...,,, 21 Bxxx ∗∗∗  for each of 

these random samples that consists of n data values that are selected with replacement from x
defined as: 

,)...,,,( 21 nxxxx =∗       (16) 
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,)...,,,( 21
∗∗∗→ nxxxF      (17) 

 
The symbol )(∗ show that ∗x is not the exact value of x, but it refers to a resampled version 

of x. In estimating the standard error of the bootstrap samples, the number of B falls within the range 
of (25 – 200). According to Efron and Tibshirani (1998) bootstrap sample of size of 50 is sufficient to 
give a reasonable estimate of the standard error of the MOM estimator. In this research, the same 
quantity of sample size was used to estimate the standard error of the MOM estimator. 

 
Secondly, the bootstrap replications equating to each of the bootstrap samples is defined as: 
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Thirdly, we estimate the bootstrap estimate of )(
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θFSe from the sample standard deviation of 
the bootstrap replications that is defined as: 
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The weight jw for the Winsorized data distribution is defined using: 
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independent groups in the observed ordered random samples. Where WMOMjeS 2 is the standard error of 
the Winsorized data distribution and is defined using: 
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The variance weighted estimate of the total mean for the Winsorized data distribution for all 
the groups is expressed as: 
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Where jw is expressed as the weight for the Winsorized data distribution and WMOMjX
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is expressed as 
the mean of the Winsorized data distribution. The t statistic for each of the group is defined as: 

,
eWMOMj

WMOMj
j S

Xt
∧−

−
=

μ
      (23) 



Winsorized Modified One Step … (Tobi Kingsley Ochuko, et al.) 239 

Where, WMOMjX
−

, 
∧

μ , and eS is the Winsorized MOM, the total mean for the Winsorized data 
distribution and the standard error of the Winsorized data distribution respectively. In the Alexander-
Govern technique, the jt value is transformed to standard normal by using the Hill’s (1970) 
normalization approximation formula and the hypothesis testing for the Winsorized sample variance of 
the WMOM estimator for jμ is expressed using: 
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The normalization approximation formula for the Alexander-Govern (AG) technique, for the 

AGWMOM test is defined using: 
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The test statistic of the Winsorized Modified One Step M-estimator in the Alexander-Govern 
test for all the groups in the observed random data sample is defined using: 
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The test statistic for the AGWMOM test follows a chi-square distribution at 05.0=α level of 

significance with J – 1 chi-square degree of freedom. The p-value is obtained using the standard chi-
square distribution table. When the value of the test statistic for the AGWMOM is < 0.05, the test is 
referred to as significant. Otherwise the test is considered not significant. 

 
The variables used in this research are balanced and unbalanced sample sizes, equal and 

unequal variance, group sizes, nature of pairing and types of distribution. All these variables were 
manipulated to show the strength and weakness of the AG test, the AGMOM test, the AGWMOM test, 
t-test and the ANOVA respectively. 

 
 

Table 1 Characteristics of the g- and h- Distribution 
 

g- (Non-negative content) h- (Non-negative content) Skewness Kurtosis Types of Distribution 
0 0 0 3 Standard normal  
0 0.5 0 11986.20 Symmetric heavy tailed 

0.5 0 1.81 18393.60 Skewed normal tailed 
0.5 0.5 120.10 18393.60 Skewed heavy tailed 

Source: Wilcox (1997) 
 
 
The Type I error rates of the five different tests that were used in this research must fall under 

three criteria of robustness. They are (i) those tests that fall within the stringent criteria of robustness 
(ii) those tests that fall within the lenient criteria of robustness and (iii) those tests that do not fall on 
neither stringent criteria of robustness nor the lenient criteria of robustness and are regarded as not 



240   ComTech Vol. 7 No. 3 September 2016: 233-244 

robust. This research considers the stringent criteria of robustness, within the interval of (0.042 – 
0.058), to judge the robustness of the tests (Lix & Keselman, 1998) and also considers the lenient 
criteria of robustness, to judge the robustness of the tests that fall within the interval of (0.025 – 0.075) 
as explained by Bradley’s (1978). These intervals of robustness are selected in this research to see 
those tests that can give remarkable control of Type I error rates. 

 
 

RESULTS AND DISCUSSIONS 
 
 

Table 2, 3, 4 and 5, define type I error rates for two groups condition. Next, Table 6, 7, 8, and 
9 show type I error rates for four groups condition. Table 10, 11, 12 and 13 explain type I error rates 
for six groups condition. Within those tables, the bolded and italized values are those values that falls 
strictly within the stringent criteria of robustness. The bolded values are those values that are within 
the lenient criteria of robustness. The un-bolded values are referred to as not robust. 

 
 

Table 2 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
under Two Groups Condition, for g = 0 and h = 0 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM t-test 

20:20 1:1 0.0508 0.0414 0.0392 0.0528 
1:36 0.0562 0.0528 0.0496 0.0710 

16:24 1:1 0.0484 0.0430 0.0386 0.0570 
1:36 0.0570 0.0552 0.0496 0.0618 
36:1 0.0498 0.0450 0.0438 0.1078 

 
 

Table 3 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0 and h = 0.5, for Two Groups Condition 

 
Sample Size  Equal and Unequal Variance AG AGMOM AGWMOM t-test 

20:20 1:1 0.0336 0.0262 0.0346 0.0356 
1:36 0.0340 0.0358 0.0392 0.0402 

16:24 1:1 0.0304 0.0266 0.0352 0.0430 
1:36 0.0394 0.0340 0.0412 0.0138 
36:1 0.0312 0.0294 0.0346 0.0814 

 
 

Table 4 AG test, AGMOM test, AGWMOM test and t-test the Type I Error Rates 
for g = 0.5 and h = 0, for Two Groups Condition 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM t-test 

20:20 1:1 0.0508 0.0420 0.0364 0.0474 
1:36 0.0562 0.0534 0.0558 0.0882 

16:24 1:1 0.0480 0.0434 0.0386 0.0570 
1:36 0.0570 0.0560 0.0588 0.0380 
36:1 0.0498 0.0504 0.0450 0.1538 

 
 

Table 5 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0.5 and h = 0.5 , for Two Groups Condition 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM t-test 

20:20 1:1 0.0336 0.0258 0.0314 0.0288 
1:36 0.3400 0.0374 0.0470 0.0430 

16:24 1:1 0.0274 0.0272 0.0352 0.0370 
1:36 0.3940 0.0378 0.0422 0.0138 
36:1 0.0312 0.0332 0.0298 0.0878 
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Table 6 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0 and h = 0, for Four Groups Condition 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM ANOVA 
20:20:20:20 1:1:1:1 0.0518 0.0404 0.0386 0.0518 

1:1:1:36 0.0522 0.0428 0.0408 0.1096 
1:4:16:36 0.0544 0.0500 0.0468 0.0798 

15:15:20:30 1:1:1:1 0.0504 0.0478 0.0458 0.0500 
1:1:1:36 0.0514 0.0482 0.0458 0.0334 
36:1:1:1 0.0504 0.0486 0.0446 0.1696 
1:4:16:36 0.0520 0.0492 0.0464 0.0320 
36:16:4:1 0.0516 0.0514 0.0468 0.1446 

 
 

Table 7 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0 and h = 0.5, for Four Groups Condition 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM ANOVA 
20:20:20:20 1:1:1:1 0.0280 0.0218 0.0282 0.0336 

1:1:1:36 0.0282 0.0230 0.0310 0.0782 
1:4:16:36 0.0282 0.0260 0.0330 0.0484 

15:15:20:30 1:1:1:1 0.0240 0.0192 0.0660 0.0344 
1:1:1:36 0.0238 0.0212 0.0772 0.0182 
36:1:1:1 0.0208 0.0192 0.0664 0.1328 
1:4:16:36 0.0230 0.0258 0.0298 0.0178 
36:16:4:1 0.0238 0.0234 0.0286 0.1130 

 
 

Table 8 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0.5 and h = 0, for Four Groups Condition 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM ANOVA 
20:20:20:20 1:1:1:1 0.0620 0.0436 0.0452 0.0550 

1:1:1:36 0.0620 0.0460 0.0272 0.1714 
1:4:16:36 0.0756 0.0546 0.0262 0.1098 

15:15:20:30 1:1:1:1 0.0272 0.0460 0.0466 0.0508 
1:1:1:36 0.0272 0.0148 0.0520 0.0756 
36:1:1:1 0.0602 0.0482 0.0520 0.2330 
1:4:16:36 0.0228 0.0102 0.0550 0.0444 
36:16:4:1 0.0646 0.0560 0.0462 0.1954 

 
 

Table 9 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0.5 and h = 0.5, for Four Groups Condition 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM ANOVA 
20:20:20:20 1:1:1:1 0.0322 0.0206 0.0398 0.0290 

1:1:1:36 0.0320 0.0220 0.0326 0.0880 
1:4:16:36 0.0336 0.0250 0.0336 0.0512 

15:15:20:30 1:1:1:1 0.3000 0.0190 0.0274 0.0336 
1:1:1:36 0.3960 0.0256 0.0474 0.0240 
36:1:1:1 0.0272 0.0260 0.0466 0.1394 
1:4:16:36 0.0360 0.0266 0.0320 0.0164 
36:16:4:1 0.0166 0.0256 0.0384 0.1130 
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Table 10 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0 and h = 0, for Six Groups Condition 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM ANOVA 

20:20:20:20:20:20 1:1:1:1:1:1 0.0522 0.0440 0.0402 0.0530 
1:1:1:1:1:36 0.0522 0.0444 0.0406 0.1260 

1:4:4:16:16:36 0.0572 0.0448 0.0464 0.0810 
2:4:4:16:32:62 1:1:1:1:1:1 0.1522 0.1864 0.1796 0.0640 

1:1:1:1:1:36 0.1434 0.1698 0.1724 0.0002 
36:1:1:1:1:1 0.1192 0.1432 0.1378 0.5992 

1:4:4:16:16:36 0.0920 0.0872 0.0926 0.0020 
36:16:16:4:4 0.1148 0.1454 0.1362 0.6878 

 
 

Table 11 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0 and h = 0.5, for Six Groups Condition 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM ANOVA 

20:20:20:20:20:20 1:1:1:1:1:1 0.0260 0.1092 0.0266 0.0350 
1:1:l:1:1:36 0.0258 0.0186 0.0256 0.0922 

1:4:4:16:16:36 0.0248 0.0216 0.0288 0.0520 
2:4:4:16:32:62 1:1:1:1:1:1 0.0794 0.1092 0.1092 0.0988 

1:1:1:1:1:36 0.0656 0.0450 0.0896 0.0040 
36:1:1:1:1:1 0.0796 0.0896 0.0982 0.3890 

1:4:4:16:16:36 0.0348 0.0486 0.0442 0.0130 
36:16:16:4:4:1 0.0898 0.0456 0.1008 0.0473 

 
 

Table 12 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0.5 and h = 0, for Six Groups Condition 

 
Sample Size  Equal and Unequal Variance AG AGMOM AGWMOM ANOVA 

20:20:20:20:20:20 1:1:1:1:1:1 0.0650 0.0498 0.0456 0.0544 
1:1:1:1:1:36 0.0728 0.0508 0.0440 0.2070 

1:4:4:16:16:36 0.0860 0.0576 0.0514 0.1184 
2:4:4:16:32:62 1:1:1:1:1:1 0.2080 0.1944 0.2118 0.0670 

1:1:1:1:1:36 0.2734 0.1692 0.2188 0.0060 
36:1:1:1:1:1 0.1678 0.1600 0.1740 0.5692 

1:4:4:16:16:36 0.2514 0.0880 0.1430 0.0034 
36:16:16:4:4 0.1418 0.1636 0.1620 0.6722 

 
 

Table 13 AG test, AGMOM test, AGWMOM test and t-test for the Type I Error Rates 
for g = 0.5 and h = 0.5, for Six Groups Condition 

 
Sample Size Equal and Unequal Variance AG AGMOM AGWMOM ANOVA 

20:20:20:20:20:20 1:1:1:1:1:1 0.0370 0.0208 0.0286 0.0330 
1:1:1:1:1:36 0.0186 0.0186 0.0292 0.1028 

1:4:4:16:16:36 0.0200 0.0246 0.0300 0.0574 
1:1:1:1:1:1 0.1212 0.1136 0.0320 0.0970 

2:4:4:16:32:62 1:1:1:1:1:36 0.1236 0.0964 0.1028 0.0100 
36:1:1:1:1:1 0.1108 0.0898 0.1036 0.3336 

1:4:4:16:16:36 0.0888 0.0478 0.0524 0.0200 
36:16:16:4:4:1 0.1044 0.0962 0.1046 0.4090 
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Across the distribution and across the whole group for both stringent and lenient criteria of 
robustness, the AGWMOM test produced 60 out the total 84 conditions of pairing that is within the 
stringent and lenient criteria of robustness. The AG test has 56 out of 84 conditions of pairing that falls 
within the lenient and stringent criteria of robustness. The AGMOM test has 51 out of 84 conditions of 
pairing that are within the interval of stringent and lenient criteria of robustness. The ANOVA has a 
total of 34 out of 84 conditions of pairing that falls within the lenient and stringent criteria of 
robustness. 

 
 

CONCLUSIONS 
 
 

The AGWMOM test gave the best control of Type I error rates under non-normality, compared 
to the AG test, the AGMOM test and the ANOVA because the test always gives the highest number of 
conditions for both stringent and lenient criteria of robust. 
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