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ABSTRACT 
 
 

The growth in computer vision technology has aided society with various kinds of tasks. One of these 
tasks is the ability of recognizing text contained in an image, or usually referred to as Optical Character 
Recognition (OCR). There are many kinds of algorithms that can be implemented into an OCR. The K-Nearest 
Neighbor is one such algorithm. This research aims to find out the process behind the OCR mechanism by using 
K-Nearest Neighbor algorithm; one of the most influential machine learning algorithms. It also aims to find out 
how precise the algorithm is in an OCR program. To do that, a simple OCR program to classify alphabets of 
capital letters is made to produce and compare real results. The result of this research yielded a maximum of 
76.9% accuracy with 200 training samples per alphabet. A set of reasons are also given as to why the program 
is able to reach said level of accuracy. 
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INTRODUCTION 
 
 
It is easy for our human eyes to discern a three dimensional structure/object. The number of 

people can be easily counted in a certain picture.Their expressions are also guessable by looking at 
their expressions. It is possible to do to this, because our eyes can detect the objects through different 
aspects such as lightning, shadow, angles, or even backgrounds (Szeliski, 2011). Vision is an 
information processing task, where it is a process which turns images of the external world into a 
description that is useful to the viewer and not cluttered with irrelevant information. (Marr, 1982). It 
involves not only the study of extracting images (representing images), but also about how 
information is captured from images, which can serve as a basis for our thoughts and actions 
(processing of information). 

 
Computer Vision is the study about the processes that a machine has to go through that 

enables it to have vision (to be able to see). The goal of computer vision is to make useful decisions 
about real physical objects and scenes based on sensed images (Shapiro & Stockman, 2001). 
Computer vision is a very influential field as it plays an important role in different kinds of fields such 
as industrial use where cameras are used to check whether mechanical parts have been created with the 
right size or forensic where they use computers to recognize people using the texture of their irises 
(Nixon & Aquado, 2002). There are various kinds of techniques used to depict vision such as image 
processing and pattern recognition. 

 
Image processing is a method to perform operations on an image by converting it into a digital 

form of data. This operation is usually used to extract certain information from an image, where the 
information is then used in a decision-making process. Image processing usually consists of 3 steps: 
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importing the image into the program, analyzing and manipulating the image, then print the output of 
the image to the user (Engineers Garage, n.d.). 

 
One of the results of the implementation of image processing is a program called Optical 

Character Recognition, or abbreviated as OCR. OCR is a program that can be used to recognize 
characters that exist in a certain image. In order to use the program, it needs to be fed with some 
examples of how each letter looks like. These examples are usually called training data. It can 
recognize both handwritten and printed text, but its accuracy highly depends on the training data that 
is given to the program. 

 
Tesseract is an example of an OCR engine. It is an open source OCR engine which runs on 

various operating systems such as Linux, Windows, and Mac OS X. It has the ability to detect 
different kinds of languages, due to its ability to be able to train the system. This project was initially 
developed by HP Labs, but is now taken over by Google. It is considered as one of the most accurate 
OCR engines available. Willis (2006) mentioned that Tesseract was able to correctly recognize 
97.74% of the file (6 mistakes out of 266 words) when the program was tested. An example of an 
Optical Character Recognition program based on the Tesseract engine has successfully been created 
on the Android operating system (Mithe, Indalkar, & Divekar, 2013). 

 
The OCR is a great technology, as it has aided society with lots of tasks such as data entry, 

automatic number plate recognition, make electronic images of printed documents searchable, and 
assistive technology for visually impaired users (Wikipedia, 2015). A research has also been presented 
to recognize historical documents, either printed or handwritten, without any knowledge of the font 
(Vamvakas, Gatos, Stamatopoulos, & Perantonis, 2008). Taking character recognition to a higher level, 
a research on text detection and character recognition in scene images has also been conducted (Coates 
et al., 2011). The purpose of this research is to find out about the workings behind this convenient 
technology. In this research, the K-Nearest Neighbor machine learning approach will be used to train 
the program. 

 
The K-Nearest Neighbor algorithm is a machine learning algorithm which is usually used in 

pattern recognition. It is considered as the top 10 most influential data mining algorithm in the 
research community (Wu et al., 2007). The K-Nearest Neighbor is a non-parametric type of algorithm 
(Thirumuruganathan, 2010), meaning it doesn’t have to create an assumption about its environment. 
The number of parameters depends on the number of training data. Classification is done by 
calculating the average/majority distance from a test vector to its neighboring training vectors. 

 
In this experiment, an Optical Character Recognition program is created using the K-Nearest 

Neighbor algorithm. Through this experiment, the process of how said algorithm works will be 
explained. The program will also calculate in how precise the K-Nearest Neighbor algorithm is in 
providing predictions for an OCR. The program will be provided with training and testing images to 
calculate its accuracy. An analysis is performed as to why the program is able to reach a certain 
precision.  

 
Shah and Jethava (2013) mentions that a working Optical Character Recognition program 

consists of 6 steps: Image Acquisition, Preprocessing, Segmentation, Feature Extraction, Classification, 
and Post Processing. The following figure 1 illustrates the procedures of a working Optical Character 
Recognition program. 
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Figure 1 Steps of Optical Character Recognition Process 
(Source: Shah & Jethava, 2013) 

 
 

Each of these steps has their own respective tasks, which are as follows: (1) Image 
Acquisition: the process of acquiring the images by using hardware. (2) Preprocessing: consists of the 
operations needed to enhance the image for segmentation. (3) Segmentation: the document is first 
segmented by row histogram, and then segmented again by column histogram, to extract the words 
contained in the document. (4) Feature Extraction: the techniques which are used to extract the 
features of the characters. The extracted features will be used to train the system. (5) Classification: 
tested image is inputted into the program for classifying. Classifier may use different approaches like 
artificial neural network or support vector machine. Classification is done by comparing the tested 
image’s feature with the pattern which has been stored for training. (6) Post Processing: consists of 
high level processes that help improve the accuracy of recognition, such as syntax analysis and 
semantic analysis. 

 
An example of these steps can be seen on the Tesseract engine, as described by Mithe, 

Indalkar, and Divekar (2013). It firsts accepts an input image as a binary image (black on white text, 
or white on black text). This input image is sent to a connected component analysis, where the text is 
analyzed to find its pitch (the number of characters that can fit side-by-side in one inch). Afterwards, 
the document is broken down into words by analyzing the character spacing. Next, Tesseract performs 
two passes to recognize words. The first pass is sent to an adaptive classifier, which is able to 
recognize the text more accurately. The second pass is done to recognize the characters which were 
not recognized well in the first pass. In figure 2, the diagram shows the steps that the Tesseract engine 
has to go through to achieve character recognition. 
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Figure 2 Architecture of Tesseract  
(Source: Mithe, Indalkar, & Divekar, 2013) 

 
 
A more complicated approach is used by Vamvakas, Gatos, Stamatopoulos, and Perantonis 

(2008), as the program is used to read historical documents, with no knowledge of the fonts used in the 
documents. Just like the steps used by Mithe, Indalkar, and Divekar (2013) and Shah and Jethava 
(2013), the program will first input the image into the system, and then converts it into a binary image 
(grayscale image). In this stage, an enhancement of the image is done to preserve the quality of 
characters, since the input is a historical document. After binarization and enhancement of the image, 
the program will do a segmentation of the document by text line detection, and word and character 
segmentation. The text line detection will segment the document vertically, where it will analyze the 
average height of the document, and detect potential text lines. Once the document has been 
segmented vertically, the characters’ stroke are analyzed and divided into different segments. These 
segments are used to find the character’s feature points. In this stage, the program will come up with 
different kinds of segmentation paths. The program will choose the best possible segmentation path, 
which satisfies the segmentation criteria. Next, since the program uses fonts it doesn’t recognize, it 
will have to create its own database of characters using training images. To ensure accuracy of the 
database, the database will be finalized by the user to check if there are any incorrect data in the 
database. Finally, the program is ready to recognize a historical document, using the Support Vector 
Machine algorithm. 

 
 

METHODS 
 
 

There are various kinds of algorithm which can be used to create an Optical Character 
Recognition program. This experiment aims to find out the process behind the OCR program by using 
the K-Nearest Neighbor approach. The experiment also calculates the accuracy of said algorithm when 
implemented into an OCR. As K-Nearest Neighbor approach is an existing algorithm, this experiment 
conducts its data collection process through an Observational Method. This experiment is conducted in 
an observational way because its main focus is to explain the process of a simple OCR. In this method, 
the project is monitored and its data is collected over time. The collected data will then be analyzed as 
to why it is able to reach a certain result. 

 
As mentioned before in section I, this experiment uses the K-Nearest Neighbor approach to 

train the system. The program is trained to classify different kinds of capital letter alphabets. The 
algorithm used in this experiment is based on a basic OCR program by Escrivá (2008). The 
experiment also requires some image processing functions to extract information from the image 
tested into the system. For that purpose, this experiment requires an additional library called OpenCV 
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(Open Source Computer Vision Library) for its image processing functions and K-Nearest Neighbor 
machine learning function. 

 
The program will also need two kinds of images: training images and testing images. A 

training image is the image used to train / teach the program of how a certain capital letter alphabet 
looks like. A sufficient number of training images will be needed to reach an acceptable accuracy. A 
testing image is an image inputted into the program, and classifying which alphabet it belongs to. The 
testing image used must be different from the images used for training. These images are created in a 
“.pbm” extension, which is a file format for monochrome images. The images are created in GIMP, an 
open source image manipulation program, with a paintbrush tool. Every image has a dimension of 
500px x 500px. There are a total of 5,226 images prepared for this experiment, which consists of 201 
images per class / alphabet. These 201 images are divided into two groups: 200 training images, and 1 
testing image for each alphabet. 

 
In order for the machine learning function to work properly, those training images have to be 

inputted into the system. In this experiment, the basic OCR functions are observed by comparing the 
results of the program when inputted with different amount of training images. This program is 
divided into 3 main functions: preprocessing, training, and classification. 
 
Preprocessing 

 
After the image is inputted into the program, the preprocessing function enhances the image to 

ensure better accuracy in classification. The image is processed in such a way, so that it will be easier 
for the program to detect different kinds of strokes which belong to the same class/alphabet. To do this, 
every time an image is inputted, the program will determine the binary values of the image (whether 
the pixel is black or white). These values are then stored into a matrix. The size of the matrix is 
determined by the dimensions of the image. 

 
In some cases, these images may contain a lot of white spaces, with the actual character 

occupying only some parts of the image. The white spaces may hinder the accuracy of the program, 
because it might cause two of the same letters to appear as different letters to the program. 

 
Referring to the first image in Figure 3, it can be seen that the character is written in the left 

part of the image, leaving the right part blank. In the second image, it is written on the right side. But 
because their positions differ so much, the program will treat them as two different letters. To prevent 
this, the blank part of the picture should be lessened.The program has to crop the part of the image 
which contains the character. The program will use a bounding box to find the coordinates of the part 
which is to be cropped. 

 
 

 
 

Figure 3 Letters with Blank Spaces 
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Figure 4 shows the result of the cropped letter Js from figure 3. After the cropping process, the 
two images now appear similar to each other. The coordinates of the bounding box are recorded. The 
pixel values from the cropped letters are also copied into another matrix. Afterwards, a new blank 
square image is created in the new program, where its dimensions depend on the result of the 
bounding box. The previously recorded bounding box coordinates are then compared: if its width is 
larger than its length, then its width will be used for the dimensions of the new image, or vice versa. 
After determining the dimensions of the blank image, the pixel data which has been copied into a 
matrix, is copied into the new image. This new image, is then scaled to a designated size (in this 
experiment, its designated size is 100px x 100px) to prevent training samples from having different 
dimensions. 
 
 

 
 

Figure 4 Cropped Letters 
 
 

.  
 

 
 

 
(a) 

 

 
 

 

 
(b) 
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(c) 
 

  
(d) 

 
Figure 5 Steps in Processing the Images. 

(a) A new square image is created based on the bounding box coordinates. 
(b) Image is assigned to white color. 

 (c) Pixel values from the uncropped image are copied to the new image. 
(d) Image is scaled to a designated size. 

 
 
Figure 5 depicts the process of the preprocessing function on the letter J from figure 4. Once 

the coordinates of the bounding box are calculated, these coordinates are used to create a new square 
image. The program then assigns a white colored background to the new image. Next, the pixel values 
of the letter J from the old image are copied to the new image. After copying the pixel values, the new 
smaller letter J image is scaled to smaller size to match the dimensions of the training images. The 
dimensions of the training images and testing image (in this case, the new letter J image) should match 
to allow easier classification. This new scaled image is then passed to the next process: training. 
 
Training 
 

Images from the preprocessing functions are brought to the training function, so that the 
program can store the training data into its database. The K-Nearest Neighbor function is already built 
into the OpenCV library, so the function only needs to be called while passing the training data to said 
function. Since this experiment uses the K-Nearest Neighbor algorithm approach, the training data are 
stored in a feature space. A feature space is a dimensional vector of numerical features that represents 
a certain object. These objects have their respective coordinates / positions in the feature space 
according to their features. Their positions scatter around the feature space, but objects which belong 
in the same class are usually grouped near to each other because they own similar features. When 
drawn in a graph, the feature space would look like this: 
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Figure 6 Feature Space 
 
 

Figure 6 shows a picture of a feature space with two classes: class A and class B. In this figure, 
objects of class A are marked with red dots, while objects of class B are marked with blue dots. Each 
class has their own unique features which distinguish them from other classes. These features are what 
determine each object’s position in the feature space. This is why class A looks as if they are grouped 
together in one location. The same thing applies to class B. In this research’s case, there would be 
5,200 objects scattered around the feature space, with 26 different colors (classes). 
 
Classification 

 
This function focuses more on the actions performed on the testing image. Similar to the 

training images, the testing image is first preprocessed to obtain a new cropped and scaled image. The 
processed image is then compared with the training images by using the K-Nearest Neighbor 
algorithm. The data of this processed image is passed to the feature space, and positions itself on the 
space depending on its features. Once in position, it determines some neighbors near to it, and does a 
comparison on the neighbors. The tested image is classified as the neighboring class with the highest 
amount of objects. 

 
 
 

 
(a)  

(b) 
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(c) 

 
Figure 7 Classifying New Data in Feature Space. 
(a) Tested image positions itself in feature space. 

(b) Objects near the tested image’s position are compared.  
(c) Tested image is classified as class B because the amount 

of class B grabbed by the image is greater than class A. 
 
 

In Figure 7, the object in green is assumed as the tested image to be classified by the program. 
It grabs some of the neighbors nearest to it, and classifies itself as the class with the highest amount of 
objects, which in this case is Class B. Therefore, the tested image belongs to class B. 
 
 

RESULTS AND DISCUSSIONS 
 
 

This program was created with C programming language, and compiled in Microsoft Visual 
Studio 2010. As the interface is in the form of a terminal, the number of training images and file path 
should be inputted manually on the code. Upon execution, the program will load and preprocess the 
images from a folder containing all the training images that have been prepared for the program. After 
all training images have been extracted and stored into the program, the program proceeds to load and 
classify the tested image. The result of the classification is then printed out in the terminal, along with 
the percentage of the precision. 

 
In this experiment, the program has run four times, with different amount of training images 

on each execution. The amount of training images is differed to see how well the program would 
respond with different levels of training given to it. The results are displayed in the table below, 
showing the results of the program’s classification, expected answer, and the program’s precision. 
 
 

Table 1 Results With 50 Training Samples  Table 2 Results With 100 Training Samples 
   

1st Execution   2nd Execution  
Result Expected answer Precision  Result Expected answer Precision 

L A 80.00%  L A 90.00% 
P B 40.00%  B B 30.00% 
L C 50.00%  L C 50.00% 
J D 50.00%  D D 40.00% 
E E 70.00%  E E 70.00% 
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Table 1 Results With 50 Training Samples 
(continued) 

 Table 2 Results With 100 Training Samples 
(continued) 

   
1st Execution   2nd Execution  

Result Expected answer Precision  Result Expected answer Precision 
F F 50.00%  F F 70.00% 
H H 90.00%  H H 100.00% 
I I 60.00%  L I 50.00% 
J J 80.00%  J J 100.00% 
F K 70.00%  F K 50.00% 
L L 90.00%  L L 90.00% 
Y M 70.00%  L M 60.00% 
U N 60.00%  U N 50.00% 
G O 50.00%  O O 60.00% 
L P 60.00%  F P 60.00% 
O Q 40.00%  O Q 90.00% 
F R 70.00%  F R 60.00% 
J S 50.00%  J S 50.00% 
J T 100.00%  J T 60.00% 
U U 90.00%  U U 100.00% 
V V 50.00%  V V 70.00% 
U W 60.00%  W W 50.00% 
X X 60.00%  X X 80.00% 
Y Y 80.00%  Y Y 100.00% 
J Z 50.00%  Z Z 70.00% 

Total correct answers: 11  Total correct answers: 15 
 
 

Table 3 Results With 150 Training Samples  Table 4 Results With 200 Training Samples. 
   

3rd Execution   4th Execution 
Result Expected answer Precision  Result Expected answer Precision 

A A 50.00%  A A 60.00% 
B B 60.00%  B B 60.00% 
L C 50.00%  G C 40.00% 
D D 70.00%  D D 70.00% 
E E 50.00%  L E 60.00% 
F F 100.00%  F F 100.00% 
G G 90.00%  G G 90.00% 
H H 80.00%  H H 80.00% 
I I 70.00%  I I 80.00% 
J J 100.00%  J J 100.00% 
L K 60.00%  L K 100.00% 
L L 100.00%  L L 100.00% 
M M 70.00%  M M 100.00% 
N N 40.00%  N N 60.00% 
O O 60.00%  O O 60.00% 
F P 40.00%  P P 60.00% 
O Q 80.00%  O Q 80.00% 
F R 30.00%  R R 60.00% 
J S 50.00%  J S 50.00% 
S T 100.00%  S T 100.00% 
U U 100.00%  U U 100.00% 
V V 90.00%  V V 100.00% 
W W 50.00%  W W 50.00% 
X X 100.00%  X X 100.00% 
Y Y 100.00%  Y Y 100.00% 
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Table 3 Results With 150 Training Samples 

(continued) 
 Table 4 Results With 200 Training Samples 

(continued) 
   

3rd Execution   4th Execution 
Result Expected answer Precision  Result Expected answer Precision 

Z Z 70.00%  Z Z 70.00% 
Total correct answers: 19  Total correct answers: 20 

 
 

Table 1, Table 2, Table 3 and Table 4 represent the results of the program’s execution. Each 
table has a different amount of training samples, with Table 1 consisting of 50 training samples, Table 
2 consisting of 100 training samples, Table 3 with 150 training samples, and Table 4 with 200 training 
samples. 

 
During the first execution, the program was able to get 11 correct answers out of 26 testing 

images with 50 training samples. In the second attempt, it was able to score 15 out of 26 correct 
answers with 100 training samples. The program scored better in the third attempt with 19 out of 26 
correct answers with 150 training samples. Finally, in the fourth execution, it was able to score 20 out 
of 26 correct answers with 200 training samples. 

 
From Table 1, Table 2, Table 3 and Table 4, it can be seen that though the program is trained 

with a number of training samples, it can still make a mistake. But the difference in result on all four 
executions proves that the number of training samples play a big part for the program to be able to 
classify a character accurately. 

 
Apart from the correct answers, there were also wrong answers by the program. There are 

three reasons that were deduced as to why the program is able to produce these wrong results. The first 
reason is because the lack of training images. The results show that the program improves when more 
training images are added to its knowledge base. Therefore, if more training images are added into the 
program, it will yield an even better result. 

 
The second reason is because of some stroke similarities in the alphabet. The results in Table 

1, Table 2, Table 3 and Table 4 show that the program did make some mistakes in parts where the 
alphabets have a similar stroke. For example, in Table 4, the program mistakes the test image C as the 
letter G, and test image Q as the letter O. A simple approach to solve this is to identify and create 
training images that features a more distinguishable feature from one letter to another, and by adding 
more training images. 

 
The third reason about the occurrence of these errors is because of the K-Nearest Neighbor 

algorithm itself. The K-Nearest Neighbor algorithm gets the job done fairly well, reaching up to 76.9% 
(20 out of 26 correct answers) accuracy when trained with 200 training images. However, despite 
being a reliable algorithm, it is sensitive to noise and unbalanced data sets. To resolve the noise issue, 
a clearer training image may be used. Another alternative is by providing the program with an 
additional function to minimalize the noise. The solution to the unbalanced data sets issue is similar to 
the solution for the second reason, which provides consistent training images where each letter has a 
distinguishable feature. 

 
 

 
 
 
 



64  ComTech Vol. 7 No. 1 March 2016: 53-65 

CONCLUSIONS 
 
 

This research shows and explains the use of the K-Nearest Neighbor algorithm in an Optical 
Character Recognition program. Through this experiment, it can be seen that the K-Nearest Neighbor 
algorithm can be used to classify images into alphabets in an OCR. It executes the job fairly well too, 
achieving a precision of 76.9%. 

 
From the results, it can be inferred that the number of correct answers increases as more 

training samples are added into the program. The reason for this occurrence is because by adding more 
training samples into the program. The program is taught to recognize more varieties of possible 
strokes for a certain character. It will be easier for the program to adapt to any stroke tested to it, if it 
has a good knowledge base. 

 
Despite its precision, there are a few solutions which can be done to improve the program. In 

order to achieve more precise results, the program’s knowledge base too, has to be accurate. This can 
be done by adding more training images into the program. The experiment also shows that the number 
of correct answers increases when more training images are added into the program. Besides adding 
training images, identifying the distinguishable features of each letter will also help when creating the 
training images. This allows the program to accurately classify letters which look similar to each other. 
A cleaner training image is also needed for the program to be able to recognize the letter. 

 
Some improvements can be applied to this program to make it more robust and useful. First, 

by creating a more robust algorithm that can detect noise in the images, it will allow the program to 
ignore irrelevant strokes or scribbles contained inside an image. Second, by adding a feature that will 
allow the OCR program to detect spaces and lines, which will enable the OCR to detect more than one 
letter contained in an image. 
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