A REUSABLE SOFTWARE COPY PROTECTION
USING HASH RESULT AND ASYMETRICAL ENCRYPTION

Aswin Wibisurya; Timothy Yudi Adinugroho

Computer Science Department, School of Computer Science, Binus University
JI. K.H. Syahdan No. 9, Palmerah, Jakarta Barat 11480
awibisurya@binus.edu, tadinugroho@binus.edu

ABSTRACT

Desktop application is one of the most popular types of application being used in computer due to the
one time install simplicity and the quick accessibility from the moment the computer being turned on. Limitation
of the copy and usage of desktop applications has long been an important issue to application providers. For
security concerns, software copy protection is usually integrated with the application. However, developers seek
to reuse the copy protection component of the software. This paper proposes an approach of reusable software
copy protection which consists of a certificate validator on the client computer and a certificate generator on the
server. The certificate validator integrity is protected using hashing result while all communications are
encrypted using asymmetrical encryption to ensure the security of this approach.

Keywords: software copy protection, hash, asymmetrical encryption

ABSTRAK

Aplikasi desktop adalah salah satu jenis yang paling populer dari aplikasi yang digunakan dalam
komputer karena satu kali install dan aksesibilitas cepat sejak komputer dihidupkan. Pembatasan jumlah
instalasi serta legalitas pemakaian aplikasi desktop per pengguna sejak lama telah menjadi perhatian utama
dari pihak pengembang aplikasi. Untuk alasan keamanan, perangkat lunak yang bertugas untuk melindungi
aplikasi dari tindakan pemakaian ilegal, biasanya diintegrasikan dengan aplikasi tersebut. Hal ini tidak
mendukung prinsip penggunaan kembali yang merupakan salah satu prinsip pengembangan aplikasi. Penulisan
ini mengusulkan sebuah metode perlindungan perangkat lunak dari penduplikasian ilegal melalui pendekatan
penggunaan kembali yang terdiri dari validator sertifikat di komputer klien, dan generator sertifikat di sisi
server. Integritas dari validator sertifikat dijaga menggunakan hasil hash dan semua data yang dikomunikasikan
dienkripsi menggunakan metode asimetrik untuk menjaga keamanan dari metode ini.

Kata kunci: software copy protection, hash, asymmetrical encryption

A Reusable Software ... (Aswin Wibisurya; Timorhy Yuadi Adinugroho) 647

INTRODUCTION

Desktop application is one of the most popular types of application being used in computer
due to the one time install simplicity and the quick accessibility from the moment the computer being
turned on. However the one-time installation of the desktop application also raise problems regarding
the user’s rights and capabilities in copying, duplicating and even distributing the desktop applications
software to other party without the application provider’s consent. Software copy protection is a
method designed to counter such problems. By planting extra file(s) or data such as license key to be
used as the application legality validator, the software creator are able to provide some degree of
countermeasure against user tendency to illegally duplicate and distribute the software. Users
knowledgeable in computer programming might be able to decode information or duplicate a license
file. Encryption method and hash result technique are common ways to ensure information hiding and
file integrity.

Software copy protection reusability has also become a challenge on its own. To be able to
reuse such complex mechanism also means leaner program, reduced development time and ultimately
development cost which will affect the product’s price. This paper focuses on a reusable software
copy protection approach. A hashing technique and encryption method are used to ensure the integrity
of reusable components as well as the certificate generated.

Literature Review
Reusable Software Component

Nowadays, there is a shift to reusing components in software development. According to AL-
Badareen, et al (2011), the software reuse became a base of most software design because it can
reduce cost, effort, time, and increase the quality and productivity of the software development
process. Sojer and Henkel (2010) stated that efficiency and effectiveness are the two main purposes
that a developer choose to reuse software code or components. Sojer and Henkel (2010) also stated
that a software component to be reused needs to be a component with proper modification just as
needed. Nobody will ever know what condition may appear in the future which drives modification of
part of a software component. Therefore, a reusable software component needs to be as general as
possible to avoid uneccessary future modification.

Software Copy Protection

Software industry uses software copy protection to prevent software usage by users who have
not purchased the software yet. This method is used by companies who sell commercial software
product. There are many software copy protection techniques. Bahaa-Eldin and Sobh (2014) stated
that these techniques include these common points: (1) Software authentication — a copy protected
software should check for the existence of a valid private certificate. (2) License integrity — the private
certificate for authentication needs to proved that it is not altered. (3) Entity authentication — each
license should be linked with a hardware/media to prevent license redistribution. (4) Protection
security — the private certificate should be encrypted, so it cannot be altered or read by anyone.

Bahaa-Eldin and Sobh (2014) proposed an approach for software copy protection based on the
four common points above. The technique requires authentication via a certificate generation over the
internet. This certificate is encrypted using public-private key mechanism, so that the license integrity
can be achieved. The software also checks for a USB dongle, so that every software copied into
different computers can only be used with the existence of one USB dongle. The certificate contains a
sequence number which is validated in the activation server through internet connection. Using this

648 Comlech Vol. 5 No. 2 Desember 2014 647-655

approach, the license can be validated for its originality, expired date, and so on. However, this
approach requires the software copy protection module to be integrated with with the main software.
Therefore it does not support reusability. Continuous internet usage for license validation in activation
server also has its own disadvantage. The software will not be available for use when the user does not
have an internet connection. Another problem for companies which might arise from this approach is
the expensive investment on USB dongle for every copy of the software.

Encryption

Encryption is used to hide information from untrusted party. The encrypted information will
show a long string of unreadable/nonsensical character. To understand the real information, it should
be decrypted first by a key. There are currently two types of encryption: symmetrical and
asymmetrical encryption. The symmetrical encryption is faster than asymmetric encryption. It also
uses lesser memory (Agrawal & Mishra, 2012). The symmetrical approach uses a single key to
encrypt and decrypt the information. When the information is transferred via network, the key has to
be transferred as well. This causes the encrypted information to be vulnerable to untrusted party
intercept. The asymmetrical approach is much more secure than the symmetrical approach because it
use public-private key method where everyone knows what the public keys is and they are able to
encrypt their message with it. However, for each public key, there are only several trusted parties that
already hold the private key which match the said public key. This private key is the one that can be
used to decrypt the message which was encrypted by the matching public key (Barukab, et al, 2012).
Since the private key is not transferred through the network, it cannot be acquired by the untrusted

party.
Symmetric Encryption

Symmetric encryption is useful for keeping the confidentiality of a message. As stated before,
symmetrical encryption uses a single key to encrypt and decrypt information. Symmetric encryption
can be generally viewed like figure (???). Suppose ‘A’ wants to send information X’ to ‘C’. ‘A’ use a
single key to encrypt ‘K’ the information and turn it into nonsensical message ‘Y’. Now, if ‘B’
manage to eavesdrop the message ‘Y’, B will not be able to extract any useful information since the
information ‘X’ has been encrypted into nonsensical message ‘Y’ and need to be decrypted first using
the same single key ‘K’ that was used to encrypt the information.

When the message ‘Y’ is received by the intended recipient which is C, then the message
should be decrypted using the key ‘K’ which might have been agreed upon before hand by ‘A’ and ‘C’
or transferred through other secure means from ‘A’ to ‘C’. Of course this means that if the key ‘K’
falls into ‘B’, then B would be able to encrypt the message and tampered with the information. Using
only symmetric encryption, there is no way to ensure that the message integrity has not been tampered
or to ensure that the message sender is indeed ‘A’. However the real problem with symmetric
encryption is how to transfer the key ‘K’ securely to the intended party since it will somewhat defeat
the purpose of the key unless it was agreed upon beforehand (Paar & Pelzl, 2009).

A Reusable Software ... (Aswin Wibisurya; Timorhy Yuadi Adinugroho) 649

B
727

] C\ Nonsensical
Message ¥

A : ¢

X Nonsensical e Viessage YIS

Key K Key K

Figure 1 Symmetric Encryption

Asymmetric Encryption

Asymmetric encryption is developed to overcome the problem of key distribution in
symmetric encryption. To put it simply, asymmetric encryption is like physical mailbox on the streets.
Everyone is free to insert the mail, or encrypting the information using public key in this regards.
However, everyone already has a way to open the mail securely using their own key or decrypting the
message using theirown private key in this regards. Suppose ‘A’ wants to send information ‘X’ to ‘C’.
‘A’ then use C’s public key to encrypt the information and turn it into nonsensical message “Y’. Now,
if ‘B’ manage to eavesdrop the message “Y’, B will only be able to decrypt the message using C’s
private key. If C want to send information to A, then C will encrypt the information using A’s Public
key and A will be able to decrypt the message using his own private key. This mechanism is quite safe
since the private key is not shared or transferred. The only key that gets transferred is the public key
which only useful to encrypt the information, not to decrypt it. This way, the message should be safe
from unwanted party since they should not be able to get the private key which can be used to decrypt
the message.

—. 77
e @ Nonsensical
Message Y
+

Public Key C

A %

.
-
e __ B

. Nonsensical [/ Message ¥ _
T = BEEETEN i X

Private Key C
Public key C

Figure 2 Asymmetric Encryption

650 Comlech Vol. 5 No. 2 Desember 2014 647-655

File Integrity

Ensuring file integrity means ensuring that a file has not been modified by any person. A file
which is stored on a client computer can be modified by the user himself or a malicious attack. An
integrity check is performed to check whether a file has been modified from the last time or not. One
of the common ways to perform integrity check is by using hash result (Sivathanu, Wright, & Zadok,
2005).

Hash Result

One of the popular mechanisms to perform file integrity check is by checking the file hash
result. This mechanism is done by computing a hash using some popular hash function like MD5 or
SHAL. The hash result should be stored in a manner which it cannot be easily modified. To check the
file integrity, the hash result is once again computed and then compared to the previously stored hash
result (Sivathanu, Wright, & Zadok, 2005). Hash result is very sensitive to change. Whenever an
attribute or a portion of a file is modified, the hashing process will provide different hash result
(Euresti et al, 2014). If the hash result is different, a file must have been modified by unauthorized
person. Therefore, hash result can be used to ensure that a file is indeed the one from the creator and
not modified by other party.

METHOD

The idea behind this research is that many kinds of software products need to be protected
from copy and usage without permission. Because the steps for product registration and validation is
usually the same and used by many products, the licensing process is a good candidate for reuse.

This paper’s approach consists of a certificate validator application and a certificate generator.
The certificate validator needs to be deployed along with the software using the software copy
protection so that the software can interact with the certificate validator. The certificate validator is
responsible for two things: (1) Generating Activation Code which contains serial key and hardware
machine code needed to create a new certificate. (2) Validating the machine code and expired date.
The certificate generator resides on the server. The certificate generator accepts the Activation Code
from the certificate validator, decrypts it, validates the serial key, saves the machine code — used for
re-registration process — to the database and returns a generated certificate to be used.

As our approach deals with software copy protection, in which a software cannot work if it is
copied without permission, there are several security issues that need to be handled. The second issue
is the encryption of the Activation Code and the certificate. If somebody can figure out the encryption,
a fake certificate could be created.

The first security issue is that the certificate validator might be replaced by a fake application
behaving as if a valid certificate exists even though it doesn’t. To handle that issue, a md5 hash of the
original certificate validator is stored on the application as a hardcoded field. Every time a software
wants to interact with a certificate validator, the software needs to generate a md5 hash of the validator
and compare the md5 hash to the one stored in its field. Because no other file can generate the same
md5 hash, the replacement of the validator can be prevented.

To handle the second security issue, an asymmetrical encryption is implemented. The
certificate validator holds public key A to encrypt activation code while the certificate generator holds
private key A to decrypt the message. Meanwhile, the certificate generator holds public key B to
encrypt certificate while the certificate validator hold private key B to decrypt the certificate before

A Reusable Software ... (Aswin Wibisurya; Timorhy Yuadi Adinugroho) 651

validating it. This way, no application can access the data except the particular target application.
Also, without having the key, nobody can generate a certificate by his/her own.

The software copy can be registered using a given serial key for a certain amount of
computers. The application will ask for the serial key if the certificate file cannot be found at a
determined file path. The user can register the application for the first time, or in case the certificate
file is lost, reregister the application using the serial key previously used for the same computer. The
certificate generator on the server checks the existence of the machine code in the database. If the
machine code doesn’t exist, the software copy is assumed to be registered for the first time, the
machine code is inserted to the database; hence decreases the amount left for another computers’
registration. Meanwhile, if the machine code already exists, a certificate will be generated without
decreasing the amount left for another computers’ registration.

The database structure used in this approach is illustrated in the Entity Relationship Diagram
(ERD) in figure 3.1. The Applications table contains various desktop applications which use this
software copy protection. The License table contains serial key used for registration, its expiration date
and the maximum quantity the software can be installed in different computers. The Registered
Computers table stores the machine code for registered software copy on different computers.

Applications

PK | Applicationid

ApplicationName

T

License

RegisteredComputers

PK | Licenseld PK,FK1 | Licenseld

< PK MachineCode

FK1 | Applicationld
SerialKey
ExpiredDate
Quantity

Figure 3 ERD of License Database

652 Comlech Vol. 5 No. 2 Desember 2014 647-655

The detailed steps of our approach can be viewed in figure 4, which is explained as the
following:

Certificate Validator gz:::;ﬁ:i
Desktop Application Holds Public Key A &
Prep : Private Key ;] (Holds Private Key A
& Public Key B)
.f
) - DET YRt ACtivat o

| cenaoware
"1 Machine Code

—p Code UsngPrivate
&

Generate Certifiate

validator's Eenerate Activation et Senal ey +
mds hash Code [Serd Key+ Hand ware Mac hine
Hardware Machine code

1Cod €} encrypted
with Public Key A
Generate certifiate

send Activation
Code
[Hardware Machine

e . + Expired Date)
" gertificate ™ encrypted with
Ewists? Pubiic Key B

v

{ Send certificar

Register Using Serial

Key

¥

Recave Seridl Key

Input Ele

Save fertificaten 3 }<

I End

send waiidate icense send seral Key
comimand
— ol Decrypt Certificate
»

Using Private Key B

Gt Hardware
Machine Code +
Expired Date

pl—"fz=

Figure 4 Steps of Certificate Generation and Validation

1. When the software starts, it generates md5 hash of the certificate validator and compare
it with the original one.

2. If the md5 hash is invalid, the application displays error message and closes, else the
application validates certificate.

3. The application searches for a certificate. If it is found, the application will request the
certificate validator to validate it. The software copy is assumed as unregistered if the
certificate doesn’t exist; hence the software will ask for a serial key. The serial key is
usedfor registering the application for the first time or re-registering by using the same
serial key as before.

4. In registration process, the application asks for a serial key, then send it to the certificate
validator.

5. The certificate validator access the hardware machine code. The hardware machine code
can be anything that is unique to a computer and is seldom changing like MAC address,
CPU serial number, network card or combination of them.

6. The hardware machine code and serial key are encrypted into activation code using
public key A and then sent to the certificate generator.

A Reusable Software ... (Aswin Wibisurya; Timorhy Yuadi Adinugroho) 653

7. The certificate generator decrypts the activation code using private key A to get the
hardware machine code and serial number.

8. The certificate generator registers the software identified by its serial key.

9. The hardware machine code and expired date are encrypted into certificate using the
public key B. The certificate is sent to the certificate validator which saves the certificate
as a file and validates it.

10. If the certificate exists, the certificate validator decrypts the certificate using private key
B to get the hardware machine code and the expired date.

11. The certificate validator validates the hardware machine code and the expired date. The
certificate validator will return a code specifying the validation result to the software.

12. According to the result, the software either shows an error message or starts the
application.

RESULT AND DISCUSSION

This approach offers a one-time developed certificate validator and certificate generator to be
used by limit the distribution of copies of different applications. Asymmetrical hash helps to ensure
the certificate validator’s integrity — that the certificate validator hasn’t been replaced by another false
program which only returns a valid value of certificate checking without actually checking the files.

This software copy protection’s security is difficult to be compromised. Because the
certificate is generated on the server side using the public key residing on the server, unless the user
acquires access to the server and stole the public key, he/she will not be able to self-generate his/her
own certificate.By storing the computer’s machine code inside the certificate file, the software cannot
be run when it is copied to a different computer as there is a unigue machine code for every computer.
Also, a keygen will not work because this approach requires to contact the server for the registration
process.

This approach also has an advantage for computers that cannot always be connected to the
internet. This approach only needs internet connection at the beginning of the registration process to
communicate with the server for certificate generation. After the certificate has been generated, the
certificate validator can work to validate the certificate without the need of internet connection.
However, if the user of the application loses the certificate file, e.g. accidental deletion or new
operating system installation, the software copy needs to be re-registered for a new certificate file. Re-
registration is made possible by the storage of computer’s machine code at the server. So, as long as
the user still has the serial key and there is no changes on the computer’s hardware, the machine code
sent to the server will always be the same with the one stored on the server, thus enabling the re-
registration process. Of course an internet connection is also needed for this re-registration process.
This paper recommends the application to have an internet connection only at the first registration,
each time the certificate is lost and each time the license expires.

In this approach, a periodic licensing is required. So the certificate file includes a pre-specified
expired date. If a lifetime license is needed, the expired date part can be omitted from the certificate,
so the certificate file consists of encrypted hardware code only. A prototype of the certificate validator
and the certificate generator was built using Qt (C++) programming language. An experiment showed
that the prototype can be used by several desktop applications developed using Qt (C++), C#.NET,
and Java.

654 Comlech Vol. 5 No. 2 Desember 2014 647-655

CONCLUSION

This paper proposed an approach to a reusable software copy protection which includes a
certificate validator deployed with the software and a certificate generator on the server. As an
interacting application, the certificate validator needs to be checked for its integrity. Md5 hash is
chosen to ensure the application’s integrity. To ensure that the certificate validator is not a self-
generated certificate by the user, an asymmetrical encryption- public-private key — is used. The
certificate is generated on the server, encrypted using a public key and can only be decrypted using the
matching private key. By keeping the certificate validator on the client computer, the application will
not need internet connection once the certificate has been created.

Some future study extensions from this paper might include the following: rather than
determining one hardware machine code to use, this paper gives some options like MAC address, CPU
serial number, network card, or combination of them. A research can be done to determine the best
hardware machine code to use. A research can also be done to prove this approach’s effectiveness to
prevent a software from being copied and used without permission.

REFERENCES

Agrawal, M., & Mishra, P. (2012). A Comparative Survey on Symmetric Key Encryption Techniques.
International Journal on Computer Science and Engineering, 877-882.

AL-Badareen, A. B., Selamat, M. H., Jabar, M. A., Din, J., & Turaev, S. (2011). Reusable Software
Component Life Cycle. International Journal of Computers, 191-199.

Bahaa-Eldin, A. M., & Sobh, M. A. (2014). A Comprehensive Software Copy Protection and Digital
Rights Management Platform. Ain Shams Engineering Journal.

Barukab, O. M., Khan, A. I., Shaik, M. S., & Murthy, M. R. (2012). Secure Communication using
Symmetric and Asymmetric Crypthographic Techniques. 1.J. Information Engineering and
Electronic Business, 36-42.

Euresti, D., Smith, B., Chen, A., Sydell, A., Motes, A., Tang, J., & Hunter, R. (2014). United States of
America Patent No. US 20140122451A1.

Paar, C., & Pelzl, J. (2009). Understanding Cryptography. New York: Springer.

Sivathanu, G., Wright, C. P., & Zadok, E. (2005). Ensuring data integrity in storage: techniques and
applications. StorageSS '05 Proceedings of the 2005 ACM Workshop on Storage security and
survivability (pp. 26-36). New York: ACM.

Sojer, M., & Henkel, J. (2010). Code Reuse in Open Source Software Development: Quantitative

Evidence, Drivers, and Impediments. Journal of the Association for Information Systems,
868-901.

A Reusable Software ... (Aswin Wibisurya; Timorhy Yuadi Adinugroho) 655

