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Abstract - Food commodities are essential
in developing countries such as Indonesia, and the
government regulates food commodity prices in eyery:
province. However, price instability issues petsist in
certain provinces, creating challenges for éffective
policy control. Data science and statistical technigués
play an important role in supporting theggovernment’s
efforts to monitor and manage food cefmmodity prices:.
This study proposes the Stackelberg-KsMeans method
to predict the commodity price index i East Java.
The proposed method is a gollaborative ftamework
that combines cluster analysis‘@nd stacking ensemble
learning for time-series predictionhCluster analysis is
conducted first using ‘Dynamieykime,Warping as the
distance measure, Which 1s8uitable fortime-series data,
resulting in two clustets for'each commodity: rice, oil,
and flour. The stacking medel consists of base learners
and a meta-learner. The base learner models include
Ridge Regression, Random Forest, and Support Vector
Regression, while the meta-learner uses Light Gradient
Boosting. Parameter optimization is performed using
grid search, and the proposed method is evaluated
against AutoARIMA implemented in Python using
both training and testing data. The results show
that the proposed method outperforms the ARIMA
model across all three error metrics: MAPE, MAE,
and RMSE. For flour commodities, the scores are
0.042% versus 0.328%, 4.715 versus 37.57, and 6.34
versus 523.99, respectively. For rice commodities,
the scores are 0.261% compared to 0.392%, 31.585
compared to 48.142, and 41.92 compared to 56.068.
For oil commodities, the scores are 0.185% compared
to 0.250%, 33.02 compared to 47.571, and 39.35
compared to 56.060.
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I. INTRODUCTION

Food is a basic human need that supports
survival and well-being. In Indonesia, basic daily
necessities include rice, shallots, garlic, red chilies,
cayenne pepper, beef, chicken, granulated sugar, wheat
flour, cooking oil, soybeans, and eggs. These goods are
referred to as food commodities (Farisi et al., 2022).
For these commodities, prices rise when demand
exceeds supply and fall when supply exceeds demand.
Such increases or decreases reflect fluctuations in food
commodity prices (Putri Z et al., 2024).

Fluctuating food commodity prices impact
economic development and political stability (Wang
et al., 2022). In 1998, a significant increase in food
commodity prices precipitates a multidimensional
crisis in Indonesia that threatens economic and national
stability. Given the importance of food commodity
prices for economic and political stability, forecasting
future prices is crucial because it can mitigate the
impact of significant price changes and help stabilize
commodity prices (Hasibuan & Novialdi, 2022).
Using appropriate forecasting methods is vital, as
more accurate forecasts support the government’s
decision-making in pricing policies.

This study uses the prices of several food
commodities in districts and cities in East Java
Province, namely medium-grade rice, bulk cooking oil,
and wheat flour. East Java is chosen because it is one
of the provinces in Indonesia with the most significant
production of several leading food commodities
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(Mardianto et al., 2023). East Java Province consists
of 38 regencies or cities with varying food commodity
prices. Forecasting based on the average provincial
price across all regions prevents the identification of
variations in price patterns and limits the ability to
capture hidden patterns in the data (Amatullah et al.,
2025). Therefore, this study clusters regencies or cities
before conducting forecasting. Another purpose of
clustering is to improve the efficiency of government
policies and eliminate the need for separate policy
management for each region (Zen et al., 2022).

Previous research on time-series clustering of
food prices is conducted by Zen et al. (2022), who
use cooking oil price data from Indonesia. This study
applies Agglomerative Hierarchical Clustering (AHC)
as the clustering method and ARIMA as the forecasting
method (Zen et al., 2022). A similar approach is also
applied by Amatullah et al. (2025) using granulated
sugar price data. In addition to food price data, time-
series clustering using the same method is applied
by Yohansa et al. (2022) to COVID-19 data in DKI
Jakarta. That study evaluates the effectiveness of
forecasting with and without clustering and shows that
clustering enables each sub-district to form a robust
structure in representing the data during the clustering
process (Yohansa et al., 2022).

In addition to the AHC algorithm for clustering,
K-Means can also be used for time-series data.
Previous research applies the K-Means algorithm te
food commodity price data in Indonesia (Mardiafito
et al., 2023). However, that study focuses only on the
clustering process and does not include a foreeasting
stage. Several prior studies also use the DyfiamicTime
Warping (DTW) similarity measure, which has the
advantage of comparing two or more time seri€s with
different lengths or frequencies without being affected
by length variations or time shifts in data patterns
(Stastny et al., 2022).

Another similarity gmeasure applicable to time-
series data is Soft-DTW, which previéus studies show
to outperform the Distance’ Barycenter Averaging
(DBA) similarity measure(Li et'ah, 2022). Therefore,
the novelty of this researc¢h lies in applying the
K-Means algorithm in the clustering process and
comparing DTW and Soft-DTW similarity measures
based on their silhouette scores. Previous studies
commonly use the ARIMA method (Amatullah et
al., 2025; Yohansa et al., 2022; Zen et al., 2022) and
several machine learning methods, such as K-nearest
neighbor regression and Random Forest (Stastny et
al., 2022). A key limitation of the ARIMA method
is that it assumes linear relationships between past
values, previous prediction errors, and current data. As
a result, ARIMA does not perform optimally when the
data are complex and exhibit nonlinear patterns over
time (Swaraj et al., 2021). Moreover, commodity price
data are influenced by multiple factors that generate
complex and nonlinear patterns, making ARIMA-
based approaches less effective for this problem
(Wang et al., 2022).

Machine learning approaches to forecasting,
as implemented by Stastny et al. (2022), capture
nonlinear patterns and offer satisfactory prediction
accuracy even for datasets with limited size and
dimensionality (Mandal et al., 2023). However, relying
on a single machine learning model limits learning
flexibility and model robustness (Mandal et al., 2023).
To achieve higher accuracy, one effective approach
is Stacking Ensemble Learning (Ismail et al., 2023).
This method combines multiple base learners and uses
a meta-learner to integrate their predictions, enabling
more flexible learning and improved predictive
performance.

According to Ismail et al. (2023), stacking
ensemble learning improves model accuracy by
combining the strengths of multiple models and
mitigating their individual weaknesses. Another
advantage of stacking ensemble learning is its ability
to efficiently reduce yériance and bias, thereby helping
to avoid overfitting (Khang@€ttal., 2022). Based on
previous studies, the‘application of stacking ensemble
learning for forecasting on datafthat are first clustered
using K-Means remains-‘limited. Therefore, the
novelty of\thisaf@search) lies in integrating K-Means
clustefimg with stacking ensemble learning to forecast
food prices,in Eastdava Province, a proposed approach
hereinafter referred to as STACKEL K-MEANS.

II. METHODS

This section explains the research methodology,
as illustrated in Figure 1. This research aims to develop
a robust forecasting methodology through clustering
analysis. Initially, cluster analysis is conducted on all
attribute data, namely the prices of food commodities
such as wheat flour and medium-grade rice in 38
districts or cities in East Java, as well as cooking oil
in 37 districts or cities. The data are collected from
the website siskaperbapo.jatim-prov.go.id using the
Selenium scraping method. The daily data collection
period spans from January 1, 2024, to April 30, 2025,
resulting in 487 data points per district or city. Based
on this collection, wheat flour and medium-grade rice
each have 18,006 data points, while cooking oil has
18,019 data points. Initially, the data are collected at
the market level in each specific city.

As shown in Figure 1, the second step is data
preprocessing. This step involves aggregating the data
using the mean value to obtain representative prices.
For example, Surabaya has seven recorded markets,
and prices from these markets are aggregated to create
a single vector price index representing Surabaya. The
same aggregation process is applied to the remaining
37 districts or cities in East Java. The third step is
cluster analysis, which is conducted for districts
or cities in East Java, as illustrated in Figure 2. The
clustering process produces new grouped data for each
food commodity, resulting in several clusters. Actual
prices from districts or cities within the same cluster
are averaged, producing daily data for each food
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Figure 2 Proposed Method: STACKEL K-MEANS

commodity cluster that are used in the subsequent
forecasting stage.

Before modeling, the newly generated data are
divided into training and testing sets. Each dataset
formed from the clustering process uses 479 data
points for training and 7 data points for testing. These
seven testing data points are considered sufficient for
forecasting evaluation because the data are recorded
on a daily basis. The next stage applies stacking
ensemble learning, followed by model evaluation.
Detailed explanations of the clustering framework,
stacking ensemble learning model, and evaluation
metrics are presented in Figures 2 and 3.

As shown in Figure 2, this study applies a time-
adaptive distance measure, Dynamic Time Warping

Forecasting Food Prices..... (Aviolla Terza Damaliana et al.)

(DTW), to perform clustering analysis on time-series
data. DTW is a robust method for calculating similarity
between two time-series datasets (Sarda-Espinosa,
2019). Its main advantage lies in its ability to flexibly
shift and warp the time axis, making it suitable for
comparing time-series data that evolve over time
(Hegg & Kennedy, 2021).

DTW calculates a cost matrix based on the
cumulative dissimilarity between points in two time-
series datasets (Herrmann etal., 2023). It then computes
the minimum distances required to optimally align the
pair of time-series data. The algorithm also generates
nonlinear alignments, allowing sections of the time
series to be stretched or compressed to achieve the
best possible matching (Folgado et al., 2018). The
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DTW formula is presented in Equation (1).

Equation (1) defines the cost matrix used to
compute the DTW value. The time series are denoted as
x,and Yy and the distance used is the pointwise distance,
which 1s defined in Equation (2). The minimum terms
represent the optimal previous alignment by allowing
movement upward, sideways, or diagonally within the
matrix. The development of DTW is extensive, and
this research also compares DTW with Soft-DTW (Xu
et al., 2023).

Soft-DTW uses a soft-minimum function to
select the optimal alignment point, which makes
the objective function easier to optimize in machine
learning models. This property makes Soft-DTW
particularly useful when integrating DTW with
gradient-based methods, such as neural networks
(Cuturi & Blondel, 2017). The Soft-DTW formula is
presented in Equation (3).

The soft minimum is calculated by
exponentiating the previous cumulative distances and
applying a logarithmic transformation. The parameter
y acts as a smoothing factor that controls the softness of
the value and can also be interpreted as a regularization
parameter (Cuturi & Blondel, 2017). After computing
distances using DTW, K-Means clustering is applied to
partition the data into several clusters. Using Equation
(4), the ¢, represents the centroid of the k—th cluster
obtained from the data. In this study, Soft-DTW is
employed as the distance measure within the K-Means
algorithm. K-Means is chosen because it partitions
data based on centroids, and the robustness of DTW-
based distances over time makes them well suited for
time-series clustering. Furthermore, thef Silhouette
score, as defined in Equation (5), is used to determine
the optimal number of clusters.

The Silhouette measure (S(i)) “ewaluates
cluster quality by calculating théydifference between
intra-cluster similarity and the “8imilarity to the
nearest neighboring clustem(Shahapure & Nicholas,
2020). A higher Silhouctte, value“indicates better
clustering performancey, withyvalues ranging from
—1 to 1. Although there“igyno fixed threshold for an
optimal Silhouette score, values greater than 0.4 are
commonly considered to indicate well-formed clusters
(Maulidya et al., 2024). The groups produced from the

clustering analysis are then used to generate new data
by aggregating the values within each cluster. These
aggregated data serve as the input for the ensemble
learning stage.

The ensemble learning approach applied in this
study is stacking ensemble learning, which consists
of a two-phase modeling process: base learners and
a meta-learner (Kwon et al., 2019). The base learner
models include Ridge Regression, Random Forest,
and Support Vector Regression, while the meta-
learner employs the Light Gradient Boosting Method
(LGBM). This combination allows the model to capture
both linear and nonlinear characteristics in the data,
with Ridge Regression modeling linear patterns and
the other models addressing nonlinear relationships
(James et al., 2013; Muhaimin et al., 2021). The
meta-learner is required to efficiently integrate the
predictions of the basedearners, and LGBM is well
suited for this taskddue to its optimized gradient
boosting framework (Ke etall;2017). In addition, grid
search optimization isi@pplied at'each modeling stage
to determingdoptimal parametérs. Model inputs are
derived frgm laggedsdata“identified using the Partial
AutocorrelationdFunction (PACF) method, and only
statistically significant/lags based on PACF are used
asdinput variablesgfor the stacking ensemble model
(Hassanifet al., 2024; Kumar et al., 2024).

As menfioned earlier, Ridge Regression is
a linear, madel that uses regularization to address
overfitting~ and handle multicollinearity. The
régulasization applied in parameter estimation is based
on the Ordinary Least Squares (OLS) framework with
an added penalty term. By incorporating regularization,
Ridge Regression complements the stacking ensemble
model by capturing linear patterns in the data (Renju
& Brunda, 2024). The Ridge Regression formula
is presented in Equation (6). In Equation (6), the
A represents the regularization parameter used to
prevent overfitting, where larger A values impose
stronger penalties and result in smaller coefficient
estimates (Pavlou et al., 2024). The objective of Ridge
Regression is to minimize the penalized loss function
in order to estimate the parameter 9] (Lukman &
Olatunji, 2018).
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Anotherbaselearnerused in this study is Random
Forest. Random Forest is an ensemble learning method
whose fundamental component is the decision tree,
and it can operate effectively under both linear and
nonlinear conditions (Talekar, 2020). This capability
allows Random Forest to contribute to the proposed
model by providing robust and stable predictive
performance. A Random Forest model consists of
several key parameters, including the number of trees,
the maximum tree depth, and the minimum number
of samples per leaf. This method inherently applies
an ensemble learning strategy through resampling to
improve generalization performance. The Random
Forest formulation is presented in Equation (7).

1
¥i
n!auf.

ieleaf

? =
(7

In this study, the Random Forest model
produces the final prediction by aggregating the
outputs from multiple decision trees. The aggregated
result is then normalized by the number of samples in
the corresponding leaf node, which is denoted as n,, o
The final base learner used in the stacking ensembleqs

best predictive performance. The objective function
aims to minimize both the prediction error and model
complexity. The SVR objective function consists
of a regularization term, denoted as |jw|]>, which
represents the norm of the weight vector and controls
model smoothness. In addition, the function includes
a parameter ¢ that regulates the trade-off between
maximizing the margin and penalizing errors that
fall outside the e-margin. Furthermore, SVR applies
the kernel trick to map the input data into a higher-
dimensional feature space, enabling the model to
generate fitted values for nonlinear relationships.
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After the modeling process is complete, the

model is evaluated using the one-on-one scenario

illustrated in Fi and the proposed approach

is benchmarked[again ARIMA implemented

in  Python. A is a Python-based
impleme onal ARIMA procedure
that au e optimal model using
the Ak ion Criterion (AIC). The results

STACKEL K-MEANS are compared
i trics such as MAE, RMSE, and

cted outcome is that STACKEL K-MEANS

o . performs  AutoARIMA across all evaluated
why it is selected to capture complex relationsh
cannot be represented by linear mode )
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III. RESULTS AND DISCUSSIONS

In this study, the first step is to cluster time-series
price data for flour, medium-grade rice, and cooking
oil. In accordance with previous research by Mardianto
et al. (2023), the number of clusters is determined
in advance, and this study evaluates configurations
with two and three clusters. The similarity measures
applied are Dynamic Time Warping (DTW) and Soft-
DTW, and the data are standardized using the Time
Series Scaler with mean—variance normalization.
The optimal clustering result is selected based on the
highest Silhouette score, and the Silhouette scores for
the two- and three-cluster configurations are presented
in the following section.

Table 1 shows positive overall Silhouette scores
for each food commodity cluster. These results indicate
that clustering using the K-Means algorithm effectively
separates the data into distinct groups. Based on Table
1, clustering each food commodity price series yields

two clusters, with the highest Silhouette values of
0.270 for flour, 0.386 for medium-grade rice, and
0.502 for cooking oil. Table 1 also indicates that Soft-
DTW produces the highest Silhouette values for most
commodities, except for cooking oil, which achieves
its highest Silhouette value using DTW. The best time-
series clustering visualizations for flour, medium-
grade rice, and cooking oil prices are presented in
Figures 4, 5, and 6, respectively.

Table 1 Silhouette Cluster Value

DTW Soft-DTW
Food Commodity
2 3 2 3
Flour 0.166 0.182 0270 0.188
Medium-grade Rice 0.261 0.133 0.386  0.247
Cooking Oil .50 0.170  0.370  0.342

lgsteru

0 100 0 200 400 00

re 4 Time Series Clustering Visualization for Flour

Cluster 1

Figure 5 Time Series Clustering Visualization for Medium-Grade Rice
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The results shown in Figures 4, 5, and 6 indicate
clear differences in data patterns between cluster 0 and
cluster 1. In these figures, the x-axis represents the
sequence of observations, while the y-axis represents
the normalized observation values. In Figure 4, the
average time-series values for cluster 0 range from —4
to 10, whereas those for cluster 1 range from —12 to 2.
Similarly, Figures 5 and 6 display distinct time-series
centroid patterns for each cluster. These visualizations
reveal hidden patterns in the time-series data for each
cluster and indicate that commodity price data are
suitable for clustering. Based on the clustering results,
regions are grouped into clusters, where cluster 0 for
flour, medium-grade rice, and cooking oil includes 22,
3, and 28 districts or cities, respectively, while cluster
1 includes 16, 35, and 9 districts or cities.

After each commodity cluster is formed, the
next step is to calculate the average actual price of
the regencies or cities within the same cluster. This
aggregated average price data are then used in the

Cluster 0

forecasting process. Figures 7 and 8§ present time-series
plots of each commodity, showing the average prices
for each cluster. The results indicate that the time-
series pattern for cluster 0 fluctuates without a clear
upward or downward trend. In contrast, flour prices
in cluster 1 tend to decline over time, while medium-
grade rice prices in cluster 1 show an increasing trend.

Unlike Figures 7 and 8, Figure 9 shows an
increasing time-series pattern for both cluster 0
and cluster 1. In addition, Figures 7, 8, and and 9
show heterogeneous separation between clusters.
These results indicate that the average prices differ
significantly across clusters, suggesting that each
cluster requires a different pricing policy. The next
step is to conduct the forecasting process for each
cluster and each food commodity price using stacking
ensemble learning. Before modeling, lagged input
variables are requir cause the data are univariate.
For cluster 0, thedsignificant lags for flour, medium-
grade rice, and rices are 2, 1, and 7,
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Figure 7 Plot Time Series of Average Wheat Flour Prices per Cluster
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respectively. Meanwhile, for cluster 1, the significant
lags are 1, 1, and 29. The data are then divided into
training and testing sets, with the testing set consisting
of the last seven days. The optimal parameters for
the base learners and meta-learner for flour, medium-
grade rice, and cooking oil price data are presented in
Tables 2, 3, and 4.

When modeling the base learners and the
meta-learner, optimal parameters are required to
achieve satisfactory prediction accuracy. These
optimal parameters for both the base learners and the
meta-learner are identified using grid search. Using
the optimal parameters obtained, the STACKEL
K-MEANS model generates predictions on the test
data, which are visualized in Figures 10, 11, and 12.

Figure 10 shows that, at a 95% confidence

Testing Data Class Distributi

level, most flour price predictions for testing clusters
0 and 1 are close to the actual observed data. These
results indicate that the STACKEL K-MEANS
model effectively captures the underlying time-series
patterns in flour prices. Similar modeling performance
is observed in Figures 11 and 12 for medium-grade
rice and cooking oil price data, where the predicted
values closely follow the actual data.

From Figures 10, 11, and 12, differences in
the widths of the confidence intervals are observed
across food commodities. A wider confidence interval
indicates greater variance between the actual data
and the predicted values. Therefore, a model is
considered more reliable when the confidence interval
is narrower, as shown in Figures 10 and 12. The model
evaluation in this study compares the performance of
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Table 2 Best Search Grid Parameters for Flour Price Data

Base and Meta Learner

Cluster 0

Cluster 1

Ridge Regression

Random Forest

SVR

LGBM

‘alpha’: 0.01

‘max_depth’: 5, ‘min_samples_split’: 3,
‘n_estimators’: 100
‘C’: 100, ‘epsilon’: 0.0001, ‘gamma’:
‘auto’, ‘kernel’: ‘rbf’
‘learning_rate’: 0.5, ‘max_depth’: 7, ‘n_
estimators’: 100, ‘num_leaves’: 10

‘alpha’: Te-15
‘max_depth’: 10, ‘min_samples_split’:
10, ‘n_estimators’: 100
‘C’: 1, ‘epsilon’: 0.0001, ‘gamma’:
‘auto’, ‘kernel’: ‘rbf’

‘learning_rate’: 0.1, ‘max_depth’: 7,
‘n_estimators’: 100, ‘num_leaves’: 31

Table 3 Best Search Grid Parameters for Medium-Grade Rice Price Data

Base and Meta Learner

Cluster 0

Cluster 1

Ridge Regression

Random Forest

3

‘alpha’: Te-15

max_depth’: 5, ‘min_samples_split’: 5,
‘n_estimators’: 100

‘alpha’: Te-15

‘min_samples_split’:
imators’: 100

SVR C’: 10, ‘epsilon’: 0.0001, ‘gamma’: * silon’: 0.0001, ‘gamma’:
‘kernel’: ‘rbf’ ‘auto’, ‘kernel’: ‘rbf’
LGBM ‘learning_rate’: 0.5, ‘max ing rate’: 0.5, ‘max_depth’: -1,
estimators’: 10, ‘nu " estimators’: 100, ‘num_leaves’: 15
Table 4 Best Search G ing Oil Price Data
ARIMA STACKEL K-MEANS
Data traiing 1412.930 26.080
1411.567 13.925
MAP 13.264 0.124
Data testing RMSE 523.997 6.345
MAE 37.576 4.715
(%) 0.328 0.042
Actual vs Predicted Prices for Flour Commodity (Clusters 0 & 1)
1 e i e
»- = prenE SRR * '
11200 A
—&- Actual Cluster O
¥ L - Pred::tmn.CIusurn
£ -E- Actual Cluster 1
#— Prediction Cluster 1
11100 4
11050 A
B i e o et 1
e g -
2025-04-24  2025-04-25  2025-04-26  N025-04-2F  2025-04-28  2025-04-29  2025-04-30
Date

Figure 10 Visualization of Stacking Ensemble Learning
Prediction Results on Testing Data for Flour Prices
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the STACKEL K-MEANS method with AutoARIMA
modeling applied to all districts or cities in East
Java. This evaluation is conducted by comparing the
modeling results on both training and testing data for
each food commodity. The AutoARIMA evaluation is
based on the average RMSE, MAE, and MAPE values
across 37 to 38 district or city models in East Java.
In contrast, the STACKEL K-MEANS evaluation uses
the average RMSE, MAE, and MAPE values from the
models obtained for clusters 0 and 1. This comparison
shows that STACKEL K-MEANS is computationally
more efficient than AutoARIMA, as it removes the
need to average results from numerous individual
regional models.

The evaluation results are presented in Tables
5, 6, and 7. These tables show that the RMSE,

Actual vs Predicted Prices for Medium Rice Commodity {Clust

MAE, and MAPE values on the testing data for
both AutoARIMA and STACKEL K-MEANS are
lower than those on the training data. This pattern
indicates that the models generalize well and produce
reliable predictions. Furthermore, Tables 5, 6, and 7
demonstrate that the RMSE and MAE values on the
testing data obtained using the STACKEL K-MEANS
method are consistently lower than those produced by
AutoARIMA. These results confirm that STACKEL
K-MEANS outperforms AutoARIMA in forecasting
the prices of all three food commodities.

Tables 5, 6, and 7 show that the MAPE values
of the AutoARIMA model for flour, medium-grade
rice, and cooking oil prices are 0.392%, 0.392%, and
0.250%, respectively. These MAPE values are all
below 10%, indicating that the AutoARIMA model
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Figure 12 Visualization of Stacking Ensemble Learning Prediction
Results on Testing Data for Cooking Oil
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Table 5 Model Evaluation on Flour Price Data

Auto ARIMA STACKEL K-MEANS
Data traming RMSE 1412.930 26.080
MAE 1411.567 13.925
MAPE (%) 13.264 0.124
Data testing RMSE 523.997 6.345
MAE 37.576 4.715
MAPE (%) 0.328 0.042

Table 6 Model Evaluation on Medium-Grade Rice Data

AutoARIMA STACKEL K-MEANS
Data training RMSE 506.133 53.375
MAE 68.674 .520
MAPE (%) 0.598
Data testing RMSE 56.068
MAE 48.142
MAPE (%) 0.392
Table 7 Model Evaluation onfOil Cooking Data,
STACKEL K-MEANS
Data training 139.150
103.665
0.651
Data testing 56.060 39.345
47.571 33.020
0.250 0.185

achieves high accuracy in pre
prices. However, whe

5% for flour,
ing oil, respectively.
These results indicate ACKEL K-MEANS
method provides more accurate price predictions for all
three food commodities than the AutoARIMA model.
Accordingly, the proposed STACKEL K-MEANS
approach demonstrates superior modeling performance
compared with the conventional AutoARIMA model.

medium-grade rice,

IV. CONCLUSIONS

Cluster analysis yields two clusters for each
commodity in this study. The distance measures used
indicate that Soft-DTW is more frequently selected
than standard DTW based on clustering performance.
In addition, K-Means serves as the primary clustering
method and produces robust inter- and intra-cluster
separation, as reflected by the Silhouette scores. Based
on the clustering results, new datasets are generated
by aggregating the sample data within each cluster,
resulting in two aggregated datasets per commodity.

Forecasting Food Prices..... (Aviolla Terza Damaliana et al.)

Stacking ensemble learning is then applied to these
aggregated data, producing at least six predictive
models to represent price variations across 37-38
districts or cities for the three commodities.

Subsequently, the prediction results obtained
from the STACKEL K-MEANS method are evaluated
foreach city and each commodity. The evaluation scores
are then averaged to produce a single performance
score for each metric and commodity. The results show
that the proposed method consistently outperforms the
benchmark AutoARIMA model across all evaluation
metrics and commodities, on both training and
testing data. Although the performance exceeds that
of AutoARIMA, further evaluation and development
are still required, such as testing additional evaluation
metrics and using alternative datasets. Overall, the
proposed framework shows strong potential as a
forecasting method.

This study has several limitations that should
be considered when interpreting the results. First, the
clustering process yields only two clusters for each
commodity, which may oversimplify the complexity
of real market structures. Second, the evaluation
phase relies on selected performance metrics and the
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available dataset, which may limit the generalizability
of the findings to different time periods, regions, or
commodities with distinct price dynamics. Third, the
specific combination of distance measures, clustering
techniques, aggregation strategies, and stacking
configurations may introduce model sensitivity.
Therefore, future research should explore alternative
evaluation metrics, test different parameter settings
during the clustering stage, and apply the framework
to additional datasets to enhance external validity.
Moreover, expanding the stacking ensemble by
incorporating more diverse base learners and relevant
external variables could further improve robustness
and practical applicability in real-world forecasting
scenarios.
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