
*Corresponding Author

P-ISSN: 2087-1244
E-ISSN: 2476-907X

39

ComTech: Computer, Mathematics and Engineering Applications, 17(1), June 2026, 39−51
DOI: 10.21512/comtech.v17i1.14218

Forecasting Food Prices in East Java Using Stacking 
Ensemble Learning via K-MEANS

Aviolla Terza Damaliana1*; Amri Muhaimin2; Nabilah Selayanti3; 
Shafira Amanda Putri4; Muhammad Nasrudin5

1-5Data Science, Computer Science, UPN “Veteran" Jawa Timur, Surabaya, Indonesia, 60294

1aviolla.terza.sada@upnjatim.ac.id; 2amri.muhaimin.stat@upnjatim.ac.id; 
322083010013@student.upnjatim.ac.id; 422083010008@student.upnjatim.ac.id; 

5nasrudin.fasilkom@upnjatim.ac.id

Received: 15th August 2025/ Revised: 29th December 2025/ Accepted: 8th January 2026 

How to Cite: Damaliana, A. T., Muhaimin, A., Selayanti, N., Putri, S. A., & Nasrudin, M. (2025). Forecasting food 
prices in East Java using stacking ensemble learning via K-MEANS. ComTech: Computer, Mathematics and Engineering 

Applications, 17(1), 39−51. https://doi.org/10.21512/comtech.v17i1.14218

Abstract - Food commodities are essential 
in developing countries such as Indonesia, and the 
government regulates food commodity prices in every 
province. However, price instability issues persist in 
certain provinces, creating challenges for effective 
policy control. Data science and statistical techniques 
play an important role in supporting the government’s 
efforts to monitor and manage food commodity prices. 
This study proposes the Stackelberg-K-Means method 
to predict the commodity price index in East Java. 
The proposed method is a collaborative framework 
that combines cluster analysis and stacking ensemble 
learning for time-series prediction. Cluster analysis is 
conducted first using Dynamic Time Warping as the 
distance measure, which is suitable for time-series data, 
resulting in two clusters for each commodity: rice, oil, 
and flour. The stacking model consists of base learners 
and a meta-learner. The base learner models include 
Ridge Regression, Random Forest, and Support Vector 
Regression, while the meta-learner uses Light Gradient 
Boosting. Parameter optimization is performed using 
grid search, and the proposed method is evaluated 
against AutoARIMA implemented in Python using 
both training and testing data. The results show 
that the proposed method outperforms the ARIMA 
model across all three error metrics: MAPE, MAE, 
and RMSE. For flour commodities, the scores are 
0.042% versus 0.328%, 4.715 versus 37.57, and 6.34 
versus 523.99, respectively. For rice commodities, 
the scores are 0.261% compared to 0.392%, 31.585 
compared to 48.142, and 41.92 compared to 56.068. 
For oil commodities, the scores are 0.185% compared 
to 0.250%, 33.02 compared to 47.571, and 39.35 
compared to 56.060.

Keywords: clustering, ensemble, food commodity, 
price, time-series

I. INTRODUCTION

Food is a basic human need that supports 
survival and well-being. In Indonesia, basic daily 
necessities include rice, shallots, garlic, red chilies, 
cayenne pepper, beef, chicken, granulated sugar, wheat 
flour, cooking oil, soybeans, and eggs. These goods are 
referred to as food commodities (Farisi et al., 2022). 
For these commodities, prices rise when demand 
exceeds supply and fall when supply exceeds demand. 
Such increases or decreases reflect fluctuations in food 
commodity prices (Putri Z et al., 2024).

Fluctuating food commodity prices impact 
economic development and political stability (Wang 
et al., 2022). In 1998, a significant increase in food 
commodity prices precipitates a multidimensional 
crisis in Indonesia that threatens economic and national 
stability. Given the importance of food commodity 
prices for economic and political stability, forecasting 
future prices is crucial because it can mitigate the 
impact of significant price changes and help stabilize 
commodity prices (Hasibuan & Novialdi, 2022). 
Using appropriate forecasting methods is vital, as 
more accurate forecasts support the government’s 
decision-making in pricing policies.

This study uses the prices of several food 
commodities in districts and cities in East Java 
Province, namely medium-grade rice, bulk cooking oil, 
and wheat flour. East Java is chosen because it is one 
of the provinces in Indonesia with the most significant 
production of several leading food commodities 
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(Mardianto et al., 2023). East Java Province consists 
of 38 regencies or cities with varying food commodity 
prices. Forecasting based on the average provincial 
price across all regions prevents the identification of 
variations in price patterns and limits the ability to 
capture hidden patterns in the data (Amatullah et al., 
2025). Therefore, this study clusters regencies or cities 
before conducting forecasting. Another purpose of 
clustering is to improve the efficiency of government 
policies and eliminate the need for separate policy 
management for each region (Zen et al., 2022).

Previous research on time-series clustering of 
food prices is conducted by Zen et al. (2022), who 
use cooking oil price data from Indonesia. This study 
applies Agglomerative Hierarchical Clustering (AHC) 
as the clustering method and ARIMA as the forecasting 
method (Zen et al., 2022). A similar approach is also 
applied by Amatullah et al. (2025) using granulated 
sugar price data. In addition to food price data, time-
series clustering using the same method is applied 
by Yohansa et al. (2022) to COVID-19 data in DKI 
Jakarta. That study evaluates the effectiveness of 
forecasting with and without clustering and shows that 
clustering enables each sub-district to form a robust 
structure in representing the data during the clustering 
process (Yohansa et al., 2022).

In addition to the AHC algorithm for clustering, 
K-Means can also be used for time-series data. 
Previous research applies the K-Means algorithm to 
food commodity price data in Indonesia (Mardianto 
et al., 2023). However, that study focuses only on the 
clustering process and does not include a forecasting 
stage. Several prior studies also use the Dynamic Time 
Warping (DTW) similarity measure, which has the 
advantage of comparing two or more time series with 
different lengths or frequencies without being affected 
by length variations or time shifts in data patterns 
(Šťastný et al., 2022).

Another similarity measure applicable to time-
series data is Soft-DTW, which previous studies show 
to outperform the Distance Barycenter Averaging 
(DBA) similarity measure (Li et al., 2022). Therefore, 
the novelty of this research lies in applying the 
K-Means algorithm in the clustering process and 
comparing DTW and Soft-DTW similarity measures 
based on their silhouette scores. Previous studies 
commonly use the ARIMA method (Amatullah et 
al., 2025; Yohansa et al., 2022; Zen et al., 2022) and 
several machine learning methods, such as K-nearest 
neighbor regression and Random Forest (Šťastný et 
al., 2022). A key limitation of the ARIMA method 
is that it assumes linear relationships between past 
values, previous prediction errors, and current data. As 
a result, ARIMA does not perform optimally when the 
data are complex and exhibit nonlinear patterns over 
time (Swaraj et al., 2021). Moreover, commodity price 
data are influenced by multiple factors that generate 
complex and nonlinear patterns, making ARIMA-
based approaches less effective for this problem 
(Wang et al., 2022).

Machine learning approaches to forecasting, 
as implemented by Šťastný et al. (2022), capture 
nonlinear patterns and offer satisfactory prediction 
accuracy even for datasets with limited size and 
dimensionality (Mandal et al., 2023). However, relying 
on a single machine learning model limits learning 
flexibility and model robustness (Mandal et al., 2023). 
To achieve higher accuracy, one effective approach 
is Stacking Ensemble Learning (Ismail et al., 2023). 
This method combines multiple base learners and uses 
a meta-learner to integrate their predictions, enabling 
more flexible learning and improved predictive 
performance. 

According to Ismail et al. (2023), stacking 
ensemble learning improves model accuracy by 
combining the strengths of multiple models and 
mitigating their individual weaknesses. Another 
advantage of stacking ensemble learning is its ability 
to efficiently reduce variance and bias, thereby helping 
to avoid overfitting (Khan et al., 2022). Based on 
previous studies, the application of stacking ensemble 
learning for forecasting on data that are first clustered 
using K-Means remains limited. Therefore, the 
novelty of this research lies in integrating K-Means 
clustering with stacking ensemble learning to forecast 
food prices in East Java Province, a proposed approach 
hereinafter referred to as STACKEL K-MEANS.

II.	 METHODS

This section explains the research methodology, 
as illustrated in Figure 1. This research aims to develop 
a robust forecasting methodology through clustering 
analysis. Initially, cluster analysis is conducted on all 
attribute data, namely the prices of food commodities 
such as wheat flour and medium-grade rice in 38 
districts or cities in East Java, as well as cooking oil 
in 37 districts or cities. The data are collected from 
the website siskaperbapo.jatim-prov.go.id using the 
Selenium scraping method. The daily data collection 
period spans from January 1, 2024, to April 30, 2025, 
resulting in 487 data points per district or city. Based 
on this collection, wheat flour and medium-grade rice 
each have 18,006 data points, while cooking oil has 
18,019 data points. Initially, the data are collected at 
the market level in each specific city.

As shown in Figure 1, the second step is data 
preprocessing. This step involves aggregating the data 
using the mean value to obtain representative prices. 
For example, Surabaya has seven recorded markets, 
and prices from these markets are aggregated to create 
a single vector price index representing Surabaya. The 
same aggregation process is applied to the remaining 
37 districts or cities in East Java. The third step is 
cluster analysis, which is conducted for districts 
or cities in East Java, as illustrated in Figure 2. The 
clustering process produces new grouped data for each 
food commodity, resulting in several clusters. Actual 
prices from districts or cities within the same cluster 
are averaged, producing daily data for each food 
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commodity cluster that are used in the subsequent 
forecasting stage.

Before modeling, the newly generated data are 
divided into training and testing sets. Each dataset 
formed from the clustering process uses 479 data 
points for training and 7 data points for testing. These 
seven testing data points are considered sufficient for 
forecasting evaluation because the data are recorded 
on a daily basis. The next stage applies stacking 
ensemble learning, followed by model evaluation. 
Detailed explanations of the clustering framework, 
stacking ensemble learning model, and evaluation 
metrics are presented in Figures 2 and 3.

As shown in Figure 2, this study applies a time-
adaptive distance measure, Dynamic Time Warping 

(DTW), to perform clustering analysis on time-series 
data. DTW is a robust method for calculating similarity 
between two time-series datasets (Sardá-Espinosa, 
2019). Its main advantage lies in its ability to flexibly 
shift and warp the time axis, making it suitable for 
comparing time-series data that evolve over time 
(Hegg & Kennedy, 2021).

DTW calculates a cost matrix based on the 
cumulative dissimilarity between points in two time-
series datasets (Herrmann et al., 2023). It then computes 
the minimum distances required to optimally align the 
pair of time-series data. The algorithm also generates 
nonlinear alignments, allowing sections of the time 
series to be stretched or compressed to achieve the 
best possible matching (Folgado et al., 2018). The 

Figure 1 Research Flow Chart

Figure 2 Proposed Method: STACKEL K-MEANSIN
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DTW formula is presented in Equation (1).
Equation (1) defines the cost matrix used to 

compute the DTW value. The time series are denoted as 
xi and yj, and the distance used is the pointwise distance, 
which is defined in Equation (2). The minimum terms 
represent the optimal previous alignment by allowing 
movement upward, sideways, or diagonally within the 
matrix. The development of DTW is extensive, and 
this research also compares DTW with Soft-DTW (Xu 
et al., 2023).

Soft-DTW uses a soft-minimum function to 
select the optimal alignment point, which makes 
the objective function easier to optimize in machine 
learning models. This property makes Soft-DTW 
particularly useful when integrating DTW with 
gradient-based methods, such as neural networks 
(Cuturi & Blondel, 2017). The Soft-DTW formula is 
presented in Equation (3).

The soft minimum is calculated by 
exponentiating the previous cumulative distances and 
applying a logarithmic transformation. The parameter 
𝛾 acts as a smoothing factor that controls the softness of 
the value and can also be interpreted as a regularization 
parameter (Cuturi & Blondel, 2017). After computing 
distances using DTW, K-Means clustering is applied to 
partition the data into several clusters. Using Equation 
(4), the ck represents the centroid of the k−th cluster 
obtained from the data. In this study, Soft-DTW is 
employed as the distance measure within the K-Means 
algorithm. K-Means is chosen because it partitions 
data based on centroids, and the robustness of DTW-
based distances over time makes them well suited for 
time-series clustering. Furthermore, the Silhouette 
score, as defined in Equation (5), is used to determine 
the optimal number of clusters.

The Silhouette measure (S(i)) evaluates 
cluster quality by calculating the difference between 
intra-cluster similarity and the similarity to the 
nearest neighboring cluster (Shahapure & Nicholas, 
2020). A higher Silhouette value indicates better 
clustering performance, with values ranging from 
−1 to 1. Although there is no fixed threshold for an 
optimal Silhouette score, values greater than 0.4 are 
commonly considered to indicate well-formed clusters 
(Maulidya et al., 2024). The groups produced from the 

clustering analysis are then used to generate new data 
by aggregating the values within each cluster. These 
aggregated data serve as the input for the ensemble 
learning stage.

The ensemble learning approach applied in this 
study is stacking ensemble learning, which consists 
of a two-phase modeling process: base learners and 
a meta-learner (Kwon et al., 2019). The base learner 
models include Ridge Regression, Random Forest, 
and Support Vector Regression, while the meta-
learner employs the Light Gradient Boosting Method 
(LGBM). This combination allows the model to capture 
both linear and nonlinear characteristics in the data, 
with Ridge Regression modeling linear patterns and 
the other models addressing nonlinear relationships 
(James et al., 2013; Muhaimin et al., 2021). The 
meta-learner is required to efficiently integrate the 
predictions of the base learners, and LGBM is well 
suited for this task due to its optimized gradient 
boosting framework (Ke et al., 2017). In addition, grid 
search optimization is applied at each modeling stage 
to determine optimal parameters. Model inputs are 
derived from lagged data identified using the Partial 
Autocorrelation Function (PACF) method, and only 
statistically significant lags based on PACF are used 
as input variables for the stacking ensemble model 
(Hassani et al., 2024; Kumar et al., 2024).

As mentioned earlier, Ridge Regression is 
a linear model that uses regularization to address 
overfitting and handle multicollinearity. The 
regularization applied in parameter estimation is based 
on the Ordinary Least Squares (OLS) framework with 
an added penalty term. By incorporating regularization, 
Ridge Regression complements the stacking ensemble 
model by capturing linear patterns in the data (Renju 
& Brunda, 2024). The Ridge Regression formula 
is presented in Equation (6). In Equation (6), the 
λ represents the regularization parameter used to 
prevent overfitting, where larger λ values impose 
stronger penalties and result in smaller coefficient 
estimates (Pavlou et al., 2024). The objective of Ridge 
Regression is to minimize the penalized loss function 
in order to estimate the parameter θj (Lukman & 
Olatunji, 2018).

						           (1)

 											               (2)

				         (3)

 									              (4)

									              (5)
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    		        	    (6)

Another base learner used in this study is Random 
Forest. Random Forest is an ensemble learning method 
whose fundamental component is the decision tree, 
and it can operate effectively under both linear and 
nonlinear conditions (Talekar, 2020). This capability 
allows Random Forest to contribute to the proposed 
model by providing robust and stable predictive 
performance. A Random Forest model consists of 
several key parameters, including the number of trees, 
the maximum tree depth, and the minimum number 
of samples per leaf. This method inherently applies 
an ensemble learning strategy through resampling to 
improve generalization performance. The Random 
Forest formulation is presented in Equation (7).

				       (7)

In this study, the Random Forest model 
produces the final prediction by aggregating the 
outputs from multiple decision trees. The aggregated 
result is then normalized by the number of samples in 
the corresponding leaf node, which is denoted as nleaf. 
The final base learner used in the stacking ensemble is 
Support Vector Regression (SVR). SVR is well suited 
for modeling nonlinear patterns in the data, which is 
why it is selected to capture complex relationships that 
cannot be represented by linear models (Suresh et al., 
2021). The SVR formulation is presented in Equation 
(8). This method uses a kernel-based function with a 
bias term to predict new values.  

				       (8)

Support Vector Regression (SVR) employs 
an epsilon-insensitive loss function that depends on 
the parameter ε, as defined in Equation (9). This loss 
function is incorporated into an objective function 
that is optimized during model training to obtain the 

best predictive performance. The objective function 
aims to minimize both the prediction error and model 
complexity. The SVR objective function consists 
of a regularization term, denoted as ||w||2, which 
represents the norm of the weight vector and controls 
model smoothness. In addition, the function includes 
a parameter c that regulates the trade-off between 
maximizing the margin and penalizing errors that 
fall outside the ε-margin. Furthermore, SVR applies 
the kernel trick to map the input data into a higher-
dimensional feature space, enabling the model to 
generate fitted values for nonlinear relationships.

		     (9)

After the modeling process is complete, the 
model is evaluated using the one-on-one scenario 
illustrated in Figure 3, and the proposed approach 
is benchmarked against AutoARIMA implemented 
in Python. AutoARIMA is a Python-based 
implementation of the conventional ARIMA procedure 
that automatically selects the optimal model using 
the Akaike Information Criterion (AIC). The results 
produced by STACKEL K-MEANS are compared 
using evaluation metrics such as MAE, RMSE, and 
MAPE, which are defined in Equations (10)–(12) 
(Hodson, 2022). All evaluation metrics are formulated 
such that lower values indicate better performance. 
The expected outcome is that STACKEL K-MEANS 
outperforms AutoARIMA across all evaluated 
datasets.

			    	  (10)

		   		   (11)

		   	  (12)

Figure 3 Evaluation Model Scenario
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III.	 RESULTS AND DISCUSSIONS

In this study, the first step is to cluster time-series 
price data for flour, medium-grade rice, and cooking 
oil. In accordance with previous research by Mardianto 
et al. (2023), the number of clusters is determined 
in advance, and this study evaluates configurations 
with two and three clusters. The similarity measures 
applied are Dynamic Time Warping (DTW) and Soft-
DTW, and the data are standardized using the Time 
Series Scaler with mean–variance normalization. 
The optimal clustering result is selected based on the 
highest Silhouette score, and the Silhouette scores for 
the two- and three-cluster configurations are presented 
in the following section.

Table 1 shows positive overall Silhouette scores 
for each food commodity cluster. These results indicate 
that clustering using the K-Means algorithm effectively 
separates the data into distinct groups. Based on Table 
1, clustering each food commodity price series yields 

two clusters, with the highest Silhouette values of 
0.270 for flour, 0.386 for medium-grade rice, and 
0.502 for cooking oil. Table 1 also indicates that Soft-
DTW produces the highest Silhouette values for most 
commodities, except for cooking oil, which achieves 
its highest Silhouette value using DTW. The best time-
series clustering visualizations for flour, medium-
grade rice, and cooking oil prices are presented in 
Figures 4, 5, and 6, respectively.

Table 1 Silhouette Cluster Value

Food Commodity
DTW Soft-DTW

2 3 2 3

Flour 0.166 0.182 0.270 0.188

Medium-grade Rice 0.261 0.133 0.386 0.247

Cooking Oil 0.502 0.170 0.370 0.342

Figure 4 Time Series Clustering Visualization for Flour

Figure 5 Time Series Clustering Visualization for Medium-Grade Rice
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The results shown in Figures 4, 5, and 6 indicate 
clear differences in data patterns between cluster 0 and 
cluster 1. In these figures, the x-axis represents the 
sequence of observations, while the y-axis represents 
the normalized observation values. In Figure 4, the 
average time-series values for cluster 0 range from −4 
to 10, whereas those for cluster 1 range from −12 to 2. 
Similarly, Figures 5 and 6 display distinct time-series 
centroid patterns for each cluster. These visualizations 
reveal hidden patterns in the time-series data for each 
cluster and indicate that commodity price data are 
suitable for clustering. Based on the clustering results, 
regions are grouped into clusters, where cluster 0 for 
flour, medium-grade rice, and cooking oil includes 22, 
3, and 28 districts or cities, respectively, while cluster 
1 includes 16, 35, and 9 districts or cities.

After each commodity cluster is formed, the 
next step is to calculate the average actual price of 
the regencies or cities within the same cluster. This 
aggregated average price data are then used in the 

forecasting process. Figures 7 and 8 present time-series 
plots of each commodity, showing the average prices 
for each cluster. The results indicate that the time-
series pattern for cluster 0 fluctuates without a clear 
upward or downward trend. In contrast, flour prices 
in cluster 1 tend to decline over time, while medium-
grade rice prices in cluster 1 show an increasing trend.

Unlike Figures 7 and 8, Figure 9 shows an 
increasing time-series pattern for both cluster 0 
and cluster 1. In addition, Figures 7, 8, and and 9 
show heterogeneous separation between clusters. 
These results indicate that the average prices differ 
significantly across clusters, suggesting that each 
cluster requires a different pricing policy. The next 
step is to conduct the forecasting process for each 
cluster and each food commodity price using stacking 
ensemble learning. Before modeling, lagged input 
variables are required because the data are univariate. 
For cluster 0, the significant lags for flour, medium-
grade rice, and cooking oil prices are 2, 1, and 7, 

Figure 6 Time Series Clustering Visualization for Cooking Oil

Figure 7 Plot Time Series of Average Wheat Flour Prices per Cluster
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respectively. Meanwhile, for cluster 1, the significant 
lags are 1, 1, and 29. The data are then divided into 
training and testing sets, with the testing set consisting 
of the last seven days. The optimal parameters for 
the base learners and meta-learner for flour, medium-
grade rice, and cooking oil price data are presented in 
Tables 2, 3, and 4.

When modeling the base learners and the 
meta-learner, optimal parameters are required to 
achieve satisfactory prediction accuracy. These 
optimal parameters for both the base learners and the 
meta-learner are identified using grid search. Using 
the optimal parameters obtained, the STACKEL 
K-MEANS model generates predictions on the test 
data, which are visualized in Figures 10, 11, and 12.

Figure 10 shows that, at a 95% confidence 

level, most flour price predictions for testing clusters 
0 and 1 are close to the actual observed data. These 
results indicate that the STACKEL K-MEANS 
model effectively captures the underlying time-series 
patterns in flour prices. Similar modeling performance 
is observed in Figures 11 and 12 for medium-grade 
rice and cooking oil price data, where the predicted 
values closely follow the actual data.

From Figures 10, 11, and 12, differences in 
the widths of the confidence intervals are observed 
across food commodities. A wider confidence interval 
indicates greater variance between the actual data 
and the predicted values. Therefore, a model is 
considered more reliable when the confidence interval 
is narrower, as shown in Figures 10 and 12. The model 
evaluation in this study compares the performance of 

Figure 8 Plot Time Series of Average Medium Rice Prices per Cluster

Figure 9 Plot Time Series of Average Bulk Cooking Oil Prices per Cluster
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Table 2 Best Search Grid Parameters for Flour Price Data

Base and Meta Learner Cluster 0 Cluster 1
Ridge Regression ‘alpha’: 0.01 ‘alpha’: 1e-15

Random Forest ‘max_depth’: 5, ‘min_samples_split’: 3, 
‘n_estimators’: 100

‘max_depth’: 10, ‘min_samples_split’: 
10, ‘n_estimators’: 100

SVR ‘C’: 100, ‘epsilon’: 0.0001, ‘gamma’: 
‘auto’, ‘kernel’: ‘rbf’

‘C’: 1, ‘epsilon’: 0.0001, ‘gamma’: 
‘auto’, ‘kernel’: ‘rbf’

LGBM ‘learning_rate’: 0.5, ‘max_depth’: 7, ‘n_
estimators’: 100, ‘num_leaves’: 10

‘learning_rate’: 0.1, ‘max_depth’: 7, 
‘n_estimators’: 100, ‘num_leaves’: 31

Table 3 Best Search Grid Parameters for Medium-Grade Rice Price Data

Base and Meta Learner Cluster 0 Cluster 1
Ridge Regression ‘alpha’: 1e-15 ‘alpha’: 1e-15

Random Forest ‘max_depth’: 5, ‘min_samples_split’: 5, 
‘n_estimators’: 100

‘max_depth’: 5, ‘min_samples_split’: 
2, ‘n_estimators’: 100

SVR C’: 10, ‘epsilon’: 0.0001, ‘gamma’: ‘scale’, 
‘kernel’: ‘rbf’

‘C’: 1000, ‘epsilon’: 0.0001, ‘gamma’: 
‘auto’, ‘kernel’: ‘rbf’

LGBM ‘learning_rate’: 0.5, ‘max_depth’: 7, ‘n_
estimators’: 10, ‘num_leaves’: 10

‘’learning_rate’: 0.5, ‘max_depth’: -1, 
‘n_estimators’: 100, ‘num_leaves’: 15

Table 4 Best Search Grid Parameters for Cooking Oil Price Data

Auto ARIMA STACKEL K-MEANS
Data training RMSE 1412.930 26.080

MAE 1411.567 13.925
MAPE (%) 13.264 0.124

Data testing RMSE 523.997 6.345
MAE 37.576 4.715

MAPE (%) 0.328 0.042

Figure 10 Visualization of Stacking Ensemble Learning 
Prediction Results on Testing Data for Flour Prices
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the STACKEL K-MEANS method with AutoARIMA 
modeling applied to all districts or cities in East 
Java. This evaluation is conducted by comparing the 
modeling results on both training and testing data for 
each food commodity. The AutoARIMA evaluation is 
based on the average RMSE, MAE, and MAPE values 
across 37 to 38 district or city models in East Java. 
In contrast, the STACKEL K-MEANS evaluation uses 
the average RMSE, MAE, and MAPE values from the 
models obtained for clusters 0 and 1. This comparison 
shows that STACKEL K-MEANS is computationally 
more efficient than AutoARIMA, as it removes the 
need to average results from numerous individual 
regional models.

The evaluation results are presented in Tables 
5, 6, and 7. These tables show that the RMSE, 

MAE, and MAPE values on the testing data for 
both AutoARIMA and STACKEL K-MEANS are 
lower than those on the training data. This pattern 
indicates that the models generalize well and produce 
reliable predictions. Furthermore, Tables 5, 6, and 7 
demonstrate that the RMSE and MAE values on the 
testing data obtained using the STACKEL K-MEANS 
method are consistently lower than those produced by 
AutoARIMA. These results confirm that STACKEL 
K-MEANS outperforms AutoARIMA in forecasting 
the prices of all three food commodities.

Tables 5, 6, and 7 show that the MAPE values 
of the AutoARIMA model for flour, medium-grade 
rice, and cooking oil prices are 0.392%, 0.392%, and 
0.250%, respectively. These MAPE values are all 
below 10%, indicating that the AutoARIMA model 

Figure 11 Visualization of Stacking Ensemble Learning Prediction 
Results on Testing Data for Medium-Grade Rice

Figure 12 Visualization of Stacking Ensemble Learning Prediction 
Results on Testing Data for Cooking Oil
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achieves high accuracy in predicting food commodity 
prices. However, when compared with the STACKEL 
K-MEANS model, the MAPE values are substantially 
lower at 0.042%, 0.261%, and 0.185% for flour, 
medium-grade rice, and cooking oil, respectively. 
These results indicate that the STACKEL K-MEANS 
method provides more accurate price predictions for all 
three food commodities than the AutoARIMA model. 
Accordingly, the proposed STACKEL K-MEANS 
approach demonstrates superior modeling performance 
compared with the conventional AutoARIMA model.

IV.	 CONCLUSIONS

Cluster analysis yields two clusters for each 
commodity in this study. The distance measures used 
indicate that Soft-DTW is more frequently selected 
than standard DTW based on clustering performance. 
In addition, K-Means serves as the primary clustering 
method and produces robust inter- and intra-cluster 
separation, as reflected by the Silhouette scores. Based 
on the clustering results, new datasets are generated 
by aggregating the sample data within each cluster, 
resulting in two aggregated datasets per commodity. 

Stacking ensemble learning is then applied to these 
aggregated data, producing at least six predictive 
models to represent price variations across 37–38 
districts or cities for the three commodities.

Subsequently, the prediction results obtained 
from the STACKEL K-MEANS method are evaluated 
for each city and each commodity. The evaluation scores 
are then averaged to produce a single performance 
score for each metric and commodity. The results show 
that the proposed method consistently outperforms the 
benchmark AutoARIMA model across all evaluation 
metrics and commodities, on both training and 
testing data. Although the performance exceeds that 
of AutoARIMA, further evaluation and development 
are still required, such as testing additional evaluation 
metrics and using alternative datasets. Overall, the 
proposed framework shows strong potential as a 
forecasting method.

This study has several limitations that should 
be considered when interpreting the results. First, the 
clustering process yields only two clusters for each 
commodity, which may oversimplify the complexity 
of real market structures. Second, the evaluation 
phase relies on selected performance metrics and the 

Table 5 Model Evaluation on Flour Price Data

Auto ARIMA STACKEL K-MEANS
Data training RMSE 1412.930 26.080

MAE 1411.567 13.925
MAPE (%) 13.264 0.124

Data testing RMSE 523.997 6.345

MAE 37.576 4.715
MAPE (%) 0.328 0.042

Table 6 Model Evaluation on Medium-Grade Rice Data

AutoARIMA STACKEL K-MEANS
Data training RMSE 506.133 53.375

MAE 68.674 27.520
MAPE (%) 0.598 0.226

Data testing RMSE 56.068 41.920
MAE 48.142 31.585

MAPE (%) 0.392 0.261

Table 7 Model Evaluation on Oil Cooking Data

AutoARIMA STACKEL K-MEANS
Data training RMSE 684.972 139.150

MAE 76.912 103.665
MAPE (%) 0.476 0.651

Data testing RMSE 56.060 39.345
MAE 47.571 33.020

MAPE (%) 0.250 0.185
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available dataset, which may limit the generalizability 
of the findings to different time periods, regions, or 
commodities with distinct price dynamics. Third, the 
specific combination of distance measures, clustering 
techniques, aggregation strategies, and stacking 
configurations may introduce model sensitivity. 
Therefore, future research should explore alternative 
evaluation metrics, test different parameter settings 
during the clustering stage, and apply the framework 
to additional datasets to enhance external validity. 
Moreover, expanding the stacking ensemble by 
incorporating more diverse base learners and relevant 
external variables could further improve robustness 
and practical applicability in real-world forecasting 
scenarios. 
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